找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nevanlinna’s Theory of Value Distribution; The Second Main Theo William Cherry,Zhuan Ye Book 2001 Springer-Verlag Berlin Heidelberg 2001 Co

[復(fù)制鏈接]
樓主: CLAST
11#
發(fā)表于 2025-3-23 13:02:41 | 只看該作者
The First Main Theorem,As we mentioned in the introduction, the basis for Nevanlinna’s theory are his two “main” theorems. This chapter discusses the first and easier of the two.
12#
發(fā)表于 2025-3-23 16:58:33 | 只看該作者
13#
發(fā)表于 2025-3-23 20:08:04 | 只看該作者
Nevanlinna’s Theory of Value Distribution978-3-662-12590-8Series ISSN 1439-7382 Series E-ISSN 2196-9922
14#
發(fā)表于 2025-3-24 01:51:27 | 只看該作者
15#
發(fā)表于 2025-3-24 02:28:24 | 只看該作者
https://doi.org/10.1007/978-3-662-12590-8Complex analysis; Nevanlinna; Nevanlinna theory; approximation; diophantine; diophantine approximation; er
16#
發(fā)表于 2025-3-24 07:14:58 | 只看該作者
William Cherry,Zhuan YeIncludes supplementary material:
17#
發(fā)表于 2025-3-24 13:11:53 | 只看該作者
Introduction,plex variable will have . complex zeros, provided that the zeros are counted with multiplicity. If .(.) is a degree . polynomial, then .grows essentially like .. as . → ∞. Therefore, we can rephrase the Fundamental Theorem of Algebra as follows: a non-constant polynomial in one complex variable take
18#
發(fā)表于 2025-3-24 18:20:01 | 只看該作者
19#
發(fā)表于 2025-3-24 21:09:12 | 只看該作者
20#
發(fā)表于 2025-3-25 00:20:27 | 只看該作者
The Second Main Theorem via Logarithmic Derivatives,e lines, and the proof we give here is generally speaking similar to the proof given in Hayman’s book [Hay 1964]. Neither Nevanlinna nor Hayman were interested in the precise structure of the error term, and they did not use the refined logarithmic derivative estimates of Gol’dberg and Grinshtein, a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
自贡市| 旬邑县| 邹平县| 肥城市| 醴陵市| 崇州市| 东港市| 恩平市| 安平县| 高州市| 左权县| 城固县| 泸水县| 林甸县| 汪清县| 石渠县| 呼伦贝尔市| 久治县| 唐河县| 保靖县| 天镇县| 宁南县| 精河县| 鄂州市| 平昌县| 乌什县| 福鼎市| 三台县| 武定县| 民丰县| 民权县| 兰考县| 滨州市| 宁海县| 东方市| 读书| 五原县| 韶山市| 建始县| 西林县| 察隅县|