找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nevanlinna Theory in Several Complex Variables and Diophantine Approximation; Junjiro Noguchi,J?rg Winkelmann Book 2014 Springer Japan 201

[復(fù)制鏈接]
樓主: 使醉
11#
發(fā)表于 2025-3-23 12:43:57 | 只看該作者
https://doi.org/10.1007/978-4-431-54571-232H30, 32Q45, 11J25, 11J97; Diophantine Approximation; Kobayashi Hyperbolicity; Nevanlinna Theory in Hi
12#
發(fā)表于 2025-3-23 15:46:47 | 只看該作者
Semi-abelian Varieties,In the forthcoming two chapters semi-abelian varieties play an important role. For that purpose we here give a notion of semi-abelian varieties from the viewpoint of complex geometry.
13#
發(fā)表于 2025-3-23 21:37:46 | 只看該作者
14#
發(fā)表于 2025-3-24 00:23:09 | 只看該作者
15#
發(fā)表于 2025-3-24 04:22:59 | 只看該作者
16#
發(fā)表于 2025-3-24 10:06:21 | 只看該作者
Book 2014 Second Main Theorem for entire curves in general complex algebraic varieties isa wide-open problem. In Chap. 4, the Cartan-Nochka Second Main Theorem in the linear projective case and the Logarithmic Bloch-Ochiai Theorem in the case of general algebraic varieties are proved. Then the theory of enti
17#
發(fā)表于 2025-3-24 11:26:26 | 只看該作者
Junjiro Noguchi,J?rg Winkelmannspeaking, radiation of different wavelengths originate from different levels of the solar atmosphere, the conspicuousness of the flare phenomenon over the entire electromagnetic spectrum implies that a large vertical portion of the atmosphere itself is involved.
18#
發(fā)表于 2025-3-24 17:19:04 | 只看該作者
19#
發(fā)表于 2025-3-24 20:04:42 | 只看該作者
Nevanlinna Theory in Several Complex Variables and Diophantine Approximation
20#
發(fā)表于 2025-3-24 23:50:03 | 只看該作者
0072-7830 n problem. In Chap. 4, the Cartan-Nochka Second Main Theorem in the linear projective case and the Logarithmic Bloch-Ochiai Theorem in the case of general algebraic varieties are proved. Then the theory of enti978-4-431-56213-9978-4-431-54571-2Series ISSN 0072-7830 Series E-ISSN 2196-9701
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 03:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永吉县| 田东县| 龙山县| 腾冲县| 图木舒克市| 舞阳县| 清徐县| 双柏县| 团风县| 旅游| 信宜市| 塔河县| 汝城县| 齐齐哈尔市| 玛曲县| 汕尾市| 海宁市| 广西| 武陟县| 台北县| 宜城市| 沾化县| 罗城| 徐闻县| 中江县| 荃湾区| 泉州市| 永德县| 南投市| 孝昌县| 长宁县| 洛扎县| 南开区| 永泰县| 年辖:市辖区| 武山县| 新河县| 长丰县| 玉林市| 卢龙县| 嘉荫县|