找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neuromathematics of Vision; Giovanna Citti,Alessandro Sarti Book 2014 Springer-Verlag Berlin Heidelberg 2014 Algorithms for Computer Visio

[復(fù)制鏈接]
查看: 29927|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:21:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Neuromathematics of Vision
編輯Giovanna Citti,Alessandro Sarti
視頻videohttp://file.papertrans.cn/665/664224/664224.mp4
概述Includes helpful algorithms for applications in computer vision and bioengineering.Rigorous mathematical approach.Written by experts in the field
叢書名稱Lecture Notes in Morphogenesis
圖書封面Titlebook: Neuromathematics of Vision;  Giovanna Citti,Alessandro Sarti Book 2014 Springer-Verlag Berlin Heidelberg 2014 Algorithms for Computer Visio
描述This book is devoted to the study of the functional architecture of the visual cortex. Its geometrical structure is the differential geometry of the connectivity between neural cells. This connectivity is building and shaping the hidden brain structures underlying visual perception. The story of the problem runs over the last 30 years, since the discovery of Hubel and Wiesel of the modular structure of the primary visual cortex, and slowly cams towards a theoretical understanding of the experimental data on what we now know as functional architecture of the primary visual cortex..Experimental data comes from several domains: neurophysiology, phenomenology of perception and neurocognitive imaging. Imaging techniques like functional MRI and diffusion tensor MRI allow to deepen the study of cortical structures.?Due to this variety of experimental data, neuromathematematics deals with modelling?both cortical structures and perceptual spaces..From the mathematical point of view, neuromathematical call for new instruments of pure mathematics: sub-Riemannian geometry models horizontal connectivity, harmonic analysis in non commutative groups allows to understand pinwheels structure, as we
出版日期Book 2014
關(guān)鍵詞Algorithms for Computer Vision; Connectivity Structure of the Visual Cortex; Functional Architecture o
版次1
doihttps://doi.org/10.1007/978-3-642-34444-2
isbn_softcover978-3-662-51005-6
isbn_ebook978-3-642-34444-2Series ISSN 2195-1934 Series E-ISSN 2195-1942
issn_series 2195-1934
copyrightSpringer-Verlag Berlin Heidelberg 2014
The information of publication is updating

書目名稱Neuromathematics of Vision影響因子(影響力)




書目名稱Neuromathematics of Vision影響因子(影響力)學(xué)科排名




書目名稱Neuromathematics of Vision網(wǎng)絡(luò)公開度




書目名稱Neuromathematics of Vision網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Neuromathematics of Vision被引頻次




書目名稱Neuromathematics of Vision被引頻次學(xué)科排名




書目名稱Neuromathematics of Vision年度引用




書目名稱Neuromathematics of Vision年度引用學(xué)科排名




書目名稱Neuromathematics of Vision讀者反饋




書目名稱Neuromathematics of Vision讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:11:57 | 只看該作者
Remco Duits,Arpan Ghosh,Tom Dela Haije,Yuri Sachkov
板凳
發(fā)表于 2025-3-22 02:55:45 | 只看該作者
José Lezama,Samy Blusseau,Jean-Michel Morel,Gregory Randall,Rafael Grompone von Gioi
地板
發(fā)表于 2025-3-22 08:03:33 | 只看該作者
Why Shading Matters along Contours,erties. We use these measurements to define the matching local family of surfaces that could result from a given shading patch. In total our results change the emphasis from seeking a single, well-define solution to an ill-posed problem to characterizing the ambiguity in possible solutions to this p
5#
發(fā)表于 2025-3-22 10:53:38 | 只看該作者
From Functional Architectures to Percepts: A Neuromathematical Approach,erceptual units constitution is introduced by means of a neurally based non linear PCA technique able to perform a spectral decomposition of the neurogeometrical operator and produce the perceptual gestalten [52, 53].
6#
發(fā)表于 2025-3-22 16:29:32 | 只看該作者
7#
發(fā)表于 2025-3-22 19:54:17 | 只看該作者
8#
發(fā)表于 2025-3-23 01:15:43 | 只看該作者
9#
發(fā)表于 2025-3-23 02:54:04 | 只看該作者
10#
發(fā)表于 2025-3-23 07:23:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 02:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安庆市| 扬中市| 格尔木市| 田林县| 仁寿县| 肇庆市| 清苑县| 崇州市| 龙川县| 钦州市| 修文县| 双城市| 阜平县| 漳州市| 马公市| 专栏| 湘潭县| 长春市| 镇雄县| 吴江市| 抚宁县| 金堂县| 汉阴县| 微山县| 永仁县| 盘锦市| 周至县| 法库县| 新龙县| 离岛区| 仁怀市| 莆田市| 紫阳县| 盐津县| 城口县| 什邡市| 温泉县| 临江市| 鸡泽县| 积石山| 穆棱市|