找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neuroimaging of Consciousness; Andrea Eugenio Cavanna,Andrea Nani,Steven Laureys Book 2013 Springer-Verlag Berlin Heidelberg 2013 Coma.Con

[復(fù)制鏈接]
樓主: 轉(zhuǎn)變
11#
發(fā)表于 2025-3-23 11:12:47 | 只看該作者
12#
發(fā)表于 2025-3-23 17:38:26 | 只看該作者
13#
發(fā)表于 2025-3-23 20:27:25 | 只看該作者
14#
發(fā)表于 2025-3-24 01:48:38 | 只看該作者
Sarah N. Garfinkel,Yoko Nagai,Anil K. Seth,Hugo D. Critchleydely used spaces of holomorphic functions in the unit ball of C^n. Spaces discussed include the Bergman spaces, the Hardy spaces, the Bloch space, BMOA, the Dirichlet space, the Besov spaces, and the Lipschitz spaces. Most proofs in the book are new and simpler than the existing ones in the literatu
15#
發(fā)表于 2025-3-24 03:16:42 | 只看該作者
Alan Carson,Mark Edwards,Jon Stonedely used spaces of holomorphic functions in the unit ball of C^n. Spaces discussed include the Bergman spaces, the Hardy spaces, the Bloch space, BMOA, the Dirichlet space, the Besov spaces, and the Lipschitz spaces. Most proofs in the book are new and simpler than the existing ones in the literatu
16#
發(fā)表于 2025-3-24 07:09:57 | 只看該作者
Andrea Nani,Andrea E. Cavannained area of holomorphic spaces. This book discusses the most well-known and widely used spaces of holomorphic functions in the unit ball of C^n. Spaces discussed include the Bergman spaces, the Hardy spaces, the Bloch space, BMOA, the Dirichlet space, the Besov spaces, and the Lipschitz spaces. Mos
17#
發(fā)表于 2025-3-24 12:46:18 | 只看該作者
18#
發(fā)表于 2025-3-24 17:38:53 | 只看該作者
19#
發(fā)表于 2025-3-24 21:56:47 | 只看該作者
Vincent Bonhomme,Pierre Boveroux,Jean Fran?ois Brichant at the end of each chapter that vary greatly in the level of difficulty...Kehe Zhu is Professor of Mathematics at State University of New York at Albany. His previous books include Operator Theory in Function Spaces (Marcel Dekk978-1-4419-1961-8978-0-387-27539-0Series ISSN 0072-5285 Series E-ISSN 2197-5612
20#
發(fā)表于 2025-3-25 03:11:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
濉溪县| 左云县| 吉林省| 和平区| 呈贡县| 烟台市| 临清市| 怀集县| 阳高县| 五莲县| 光山县| 双江| 彭山县| 邹城市| 正镶白旗| 钦州市| 新宾| 耒阳市| 嘉峪关市| 临颍县| 博白县| 通城县| 名山县| 乌鲁木齐市| 耒阳市| 吉安县| 东源县| 巫山县| 旺苍县| 兰州市| 丽江市| 龙陵县| 恩施市| 博白县| 山阴县| 临城县| 康保县| 石景山区| 大田县| 禹州市| 云阳县|