找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neuroimaging of Consciousness; Andrea Eugenio Cavanna,Andrea Nani,Steven Laureys Book 2013 Springer-Verlag Berlin Heidelberg 2013 Coma.Con

[復制鏈接]
樓主: 轉變
11#
發(fā)表于 2025-3-23 11:12:47 | 只看該作者
12#
發(fā)表于 2025-3-23 17:38:26 | 只看該作者
13#
發(fā)表于 2025-3-23 20:27:25 | 只看該作者
14#
發(fā)表于 2025-3-24 01:48:38 | 只看該作者
Sarah N. Garfinkel,Yoko Nagai,Anil K. Seth,Hugo D. Critchleydely used spaces of holomorphic functions in the unit ball of C^n. Spaces discussed include the Bergman spaces, the Hardy spaces, the Bloch space, BMOA, the Dirichlet space, the Besov spaces, and the Lipschitz spaces. Most proofs in the book are new and simpler than the existing ones in the literatu
15#
發(fā)表于 2025-3-24 03:16:42 | 只看該作者
Alan Carson,Mark Edwards,Jon Stonedely used spaces of holomorphic functions in the unit ball of C^n. Spaces discussed include the Bergman spaces, the Hardy spaces, the Bloch space, BMOA, the Dirichlet space, the Besov spaces, and the Lipschitz spaces. Most proofs in the book are new and simpler than the existing ones in the literatu
16#
發(fā)表于 2025-3-24 07:09:57 | 只看該作者
Andrea Nani,Andrea E. Cavannained area of holomorphic spaces. This book discusses the most well-known and widely used spaces of holomorphic functions in the unit ball of C^n. Spaces discussed include the Bergman spaces, the Hardy spaces, the Bloch space, BMOA, the Dirichlet space, the Besov spaces, and the Lipschitz spaces. Mos
17#
發(fā)表于 2025-3-24 12:46:18 | 只看該作者
18#
發(fā)表于 2025-3-24 17:38:53 | 只看該作者
19#
發(fā)表于 2025-3-24 21:56:47 | 只看該作者
Vincent Bonhomme,Pierre Boveroux,Jean Fran?ois Brichant at the end of each chapter that vary greatly in the level of difficulty...Kehe Zhu is Professor of Mathematics at State University of New York at Albany. His previous books include Operator Theory in Function Spaces (Marcel Dekk978-1-4419-1961-8978-0-387-27539-0Series ISSN 0072-5285 Series E-ISSN 2197-5612
20#
發(fā)表于 2025-3-25 03:11:56 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
澄迈县| 南京市| 漳平市| 甘谷县| 区。| 宜州市| 大荔县| 正宁县| 平乐县| 公主岭市| 红桥区| 康马县| 方山县| 南雄市| 伊金霍洛旗| 罗源县| 措美县| 新平| 兰溪市| 临沧市| 柳河县| 钟祥市| 陆良县| 武川县| 湘西| 汉川市| 明光市| 旺苍县| 宁陕县| 台中县| 长岭县| 文安县| 蒙城县| 句容市| 广东省| 济南市| 连州市| 监利县| 睢宁县| 宁强县| 隆回县|