找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Neurocomputing; Algorithms, Architec Fran?oise Fogelman Soulié,Jeanny Hérault Conference proceedings 1990 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: Fixate
21#
發(fā)表于 2025-3-25 06:24:33 | 只看該作者
22#
發(fā)表于 2025-3-25 10:16:41 | 只看該作者
Product Units with Trainable Exponents and Multi-Layer Networkstead of the output of this unit depending on a weighted sum of the inputs, it depends on a weighted product. In justifying the introduction of a new type of unit we explore at some length the rationale behind the use of multi-layer neural networks, and the properties of the computational units withi
23#
發(fā)表于 2025-3-25 11:53:46 | 只看該作者
Optimization of the number of hidden cells in a multilayer perceptron. Validation in the linear casea given task. An incremental algorithm has been proposed [l] which is proven to converge. It essentially works for binary outputs and does not necessarily provide the minimal size solution. We propose another approach, in the general case of continuous neurons.
24#
發(fā)表于 2025-3-25 17:08:42 | 只看該作者
25#
發(fā)表于 2025-3-25 21:37:45 | 只看該作者
Synchronous Boltzmann Machines and Gibbs Fields: Learning Algorithmsem as pattern classifiers that learn, have proposed a learning algorithm for the asynchronous machine. Here we study the synchronous machine where all neurons are simultaneously updated, we compute its equilibrium energy, and propose a synchronous learning algorithm based on . average coactivity of
26#
發(fā)表于 2025-3-26 03:38:08 | 只看該作者
Learning algorithms in neural networks: recent resultsor perception. The algorithm optimizes the stability of learned patterns, which enlarges the size of the basins of attraction. The second algorithm builds a multilayer feedforward network: it allows one to learn an arbitrary mapping input → output. The convergence of the growth process is guaranteed
27#
發(fā)表于 2025-3-26 04:47:36 | 只看該作者
Statistical approach to the Jutten-Hérault algorithmith guidance provided by neurosciences analogies, the unsupervised learning JH algorithm has been adjusted and implemented on an array of p linear neurons totally interconnected [0] [1]. Because of its numerous applications ranging from image processing to antenna array processing, the JH algorithm
28#
發(fā)表于 2025-3-26 10:38:43 | 只看該作者
29#
發(fā)表于 2025-3-26 13:00:08 | 只看該作者
Neural Networks Dynamicss (binary states) and also for continuous local rules. By doing so we prove, in the context of binary networks, the convergence to cycles of period one or two for symmetric weights. Also we prove that “almost symmetric” Neural Networks admit large cycles (non-bounded in the size, n, of the array) an
30#
發(fā)表于 2025-3-26 18:49:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 23:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
钟山县| 万全县| 新河县| 祥云县| 英山县| 金华市| 安宁市| 辉南县| 交口县| 罗江县| 驻马店市| 灌南县| 上思县| 自贡市| 凌源市| 南溪县| 灵丘县| 石狮市| 凤翔县| 桦川县| 明光市| 宣恩县| 洛南县| 库尔勒市| 仁寿县| 灵台县| 本溪市| 化州市| 永安市| 陵川县| 三明市| 蒲江县| 临安市| 巴林右旗| 克什克腾旗| 富顺县| 延安市| 元朗区| 垣曲县| 南漳县| 全椒县|