找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Networks with Model Compression; Baochang Zhang,Tiancheng Wang,David Doermann Book 2024 The Editor(s) (if applicable) and The Autho

[復制鏈接]
查看: 41717|回復: 39
樓主
發(fā)表于 2025-3-21 16:30:10 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Neural Networks with Model Compression
編輯Baochang Zhang,Tiancheng Wang,David Doermann
視頻videohttp://file.papertrans.cn/664/663727/663727.mp4
概述Review recent advances in CNN compression and acceleration.Elaborate recent advances on deep model compression technologies.Introduce applications of model compression in image classification, speech
叢書名稱Computational Intelligence Methods and Applications
圖書封面Titlebook: Neural Networks with Model Compression;  Baochang Zhang,Tiancheng Wang,David Doermann Book 2024 The Editor(s) (if applicable) and The Autho
描述.Deep learning has achieved impressive results in image classification, computer vision and natural language processing. To achieve better performance, deeper and wider networks have been designed, which increase the demand for computational resources. The number of floating-point operations (FLOPs) has increased dramatically with larger networks, and this has become an obstacle for convolutional neural networks (CNNs) being developed for mobile and embedded devices. In this context, our book will focus on CNN compression and acceleration, which are important for the research community. We will describe numerous methods, including parameter quantization, network pruning, low-rank decomposition and knowledge distillation. More recently, to reduce the burden of handcrafted architecture design, neural architecture search (NAS) has been used to automatically build neural networks by searching over a vast architecture space. Our book will also introduce NAS due to its superiority and state-of-the-art performance in various applications, such as image classification and object detection. We also describe extensive applications of compressed deep models on image classification, speech rec
出版日期Book 2024
關鍵詞Binary Neural Network; Model Compression; Artificial Intelligence; Machine Learning; Computer Vision
版次1
doihttps://doi.org/10.1007/978-981-99-5068-3
isbn_softcover978-981-99-5070-6
isbn_ebook978-981-99-5068-3Series ISSN 2510-1765 Series E-ISSN 2510-1773
issn_series 2510-1765
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Neural Networks with Model Compression影響因子(影響力)




書目名稱Neural Networks with Model Compression影響因子(影響力)學科排名




書目名稱Neural Networks with Model Compression網(wǎng)絡公開度




書目名稱Neural Networks with Model Compression網(wǎng)絡公開度學科排名




書目名稱Neural Networks with Model Compression被引頻次




書目名稱Neural Networks with Model Compression被引頻次學科排名




書目名稱Neural Networks with Model Compression年度引用




書目名稱Neural Networks with Model Compression年度引用學科排名




書目名稱Neural Networks with Model Compression讀者反饋




書目名稱Neural Networks with Model Compression讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:37:33 | 只看該作者
Quantization of Neural Networks,presentation and quantization have been long-standing in digital computing, NNs offer unique opportunities for advancements in this area. Although this survey primarily focuses on quantization for inference, it is important to acknowledge that quantization has also shown promise in NN training.
板凳
發(fā)表于 2025-3-22 03:01:28 | 只看該作者
Applications,us real tasks with the help of these binary methods, including image classification, image classification, speech recognition, and object detection and tracking. In this section, we introduce the applications of binary neural networks in these fields.
地板
發(fā)表于 2025-3-22 06:48:51 | 只看該作者
5#
發(fā)表于 2025-3-22 09:28:58 | 只看該作者
6#
發(fā)表于 2025-3-22 13:30:22 | 只看該作者
7#
發(fā)表于 2025-3-22 18:56:13 | 只看該作者
8#
發(fā)表于 2025-3-23 00:41:47 | 只看該作者
https://doi.org/10.1007/978-981-99-5068-3Binary Neural Network; Model Compression; Artificial Intelligence; Machine Learning; Computer Vision
9#
發(fā)表于 2025-3-23 02:05:26 | 只看該作者
10#
發(fā)表于 2025-3-23 08:46:04 | 只看該作者
Binary Neural Networks,This chapter provides an overview of the most recent developments in binary neural network (BNN) technologies, with a particular focus on their suitability for front-end, edge-based computing.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
桃园县| 屯门区| 九台市| 垫江县| 奎屯市| 普格县| 平原县| 板桥市| 许昌县| 肇东市| 繁峙县| 新化县| 阿荣旗| 息烽县| 仁怀市| 潼关县| 商河县| 常熟市| 水富县| 柘城县| 遂溪县| 连山| 新密市| 乌拉特后旗| 留坝县| 临沭县| 兰州市| 通许县| 永川市| 平山县| 诸暨市| 资溪县| 浦北县| 萨迦县| 祁连县| 昌图县| 分宜县| 临桂县| 中牟县| 如皋市| 磐石市|