找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Networks with Discontinuous/Impact Activations; Marat Akhmet,Enes Y?lmaz Book 2014 Springer Science+Business Media New York 2014 Ar

[復(fù)制鏈接]
樓主: 難受
11#
發(fā)表于 2025-3-23 12:07:09 | 只看該作者
12#
發(fā)表于 2025-3-23 14:49:14 | 只看該作者
13#
發(fā)表于 2025-3-23 20:12:42 | 只看該作者
978-1-4939-4598-6Springer Science+Business Media New York 2014
14#
發(fā)表于 2025-3-24 00:54:55 | 只看該作者
15#
發(fā)表于 2025-3-24 04:50:11 | 只看該作者
16#
發(fā)表于 2025-3-24 07:01:23 | 只看該作者
https://doi.org/10.1007/978-1-4614-8566-7Artificial Intelligence; Chaotic Neural Networks; Cohen-Grossberg Neural Networks; Computational Neural
17#
發(fā)表于 2025-3-24 12:57:59 | 只看該作者
Marat Akhmet,Enes Y?lmazExplores questions related to the biological underpinning for models of neural networks.Considers neural networks modeling using differential equations with impulsive and piecewise constant argument d
18#
發(fā)表于 2025-3-24 16:19:51 | 只看該作者
19#
發(fā)表于 2025-3-24 21:15:12 | 只看該作者
Periodic Motions and Equilibria of Neural Networks with Piecewise Constant Argument,In this chapter we consider Hopfield-type neural networks systems with piecewise constant argument of generalized type. Sufficient conditions for the existence of a unique equilibrium and a periodic solution are obtained. The stability of these solutions is investigated.
20#
發(fā)表于 2025-3-25 00:42:50 | 只看該作者
Periodic Motions of Neural Networks with Impact Activations and Piecewise Constant Argument,In this chapter we derive some sufficient conditions for the existence and stability of periodic solutions for each (., .)-type neural networks and (., .)-type neural networks, respectively. Examples with numerical simulations are given to illustrate our results.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 02:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苏尼特右旗| 堆龙德庆县| 太仓市| 贡山| 红河县| 浦江县| 无为县| 光山县| 宁远县| 苍山县| 广德县| 黔东| 西昌市| 仁怀市| 河池市| 平潭县| 扎鲁特旗| 浑源县| 西畴县| 西乌珠穆沁旗| 辽宁省| 潮安县| 涡阳县| 治县。| 延庆县| 涟源市| 恭城| 凤城市| 盐亭县| 民丰县| 桦川县| 台安县| 甘南县| 偃师市| 通海县| 高清| 磐石市| 麻城市| 玛曲县| 孟连| 安泽县|