找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Networks and the Financial Markets; Predicting, Combinin Jimmy Shadbolt,John G. Taylor Book 2002 Springer-Verlag London 2002 Arbitra

[復(fù)制鏈接]
樓主: 轉(zhuǎn)變
11#
發(fā)表于 2025-3-23 12:49:11 | 只看該作者
12#
發(fā)表于 2025-3-23 15:23:42 | 只看該作者
Introduction to the Financial Markets get a better view of how some asset values will change? Even more preliminarily, what do these quantities such as “yield curve” and “basis points” mean for investors and those, like ourselves, who are trying to project the values of certain financial assets? If we can get a better view of asset val
13#
發(fā)表于 2025-3-23 20:52:46 | 只看該作者
14#
發(fā)表于 2025-3-24 02:09:33 | 只看該作者
15#
發(fā)表于 2025-3-24 03:11:10 | 只看該作者
General Form of Models of Financial Marketse time step in the future, . + 1, will have the form .where the time series vectors .. are economic variables evaluated at earlier times t, t ? 1, t ? 2,…, t ? 23 (where our cut-off at 24 lags is somewhat arbitrary but cannot be expected to be larger with any assurance). In this chapter we will disc
16#
發(fā)表于 2025-3-24 08:09:04 | 只看該作者
17#
發(fā)表于 2025-3-24 12:20:44 | 只看該作者
Linear Models returns from the random walk model would provide a theoretical basis for a more general form for the expectations of asset returns. Under this assumption the na?ve estimate, based purely on statistics of historical data, is replaced by a general estimate conditioned on the most recent past returns
18#
發(fā)表于 2025-3-24 18:06:44 | 只看該作者
Input Selectionchniques, especially neural networks, can only use a limited number of inputs because of the parameterisation of the model and the limited number of data points available. We note that a number of techniques (e.g. adaptive lag and linear RVM) have their own selection techniques, and so avoid some of
19#
發(fā)表于 2025-3-24 22:27:20 | 只看該作者
20#
發(fā)表于 2025-3-25 00:54:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 05:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天全县| 繁昌县| 关岭| 泗阳县| 邳州市| 抚州市| 新余市| 康马县| 如东县| 蒲城县| 额敏县| 义马市| 乌鲁木齐县| 资源县| 交口县| 弥渡县| 历史| 星子县| 金寨县| 宣化县| 息烽县| 南昌市| 申扎县| 安达市| 营口市| 成都市| 乐陵市| 葫芦岛市| 广西| 黄大仙区| 惠水县| 昭苏县| 石柱| 乌鲁木齐县| 祁阳县| 和平县| 临武县| 张家界市| 咸阳市| 广州市| 汝阳县|