找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Networks and Sea Time Series; Reconstruction and E Brunello Tirozzi,Silvia Puca,Stefano Corsini Book 2006 Birkh?user Boston 2006 Exc

[復(fù)制鏈接]
樓主: 和善
21#
發(fā)表于 2025-3-25 03:49:03 | 只看該作者
2164-3679 ta, namely significant wave heights and sea levels.Good refe.Increasingly, neural networks are used and implemented in a wide range of fields and have become useful tools in probabilistic analysis and prediction theory. This book—unique in the literature—studies the application of neural networks to
22#
發(fā)表于 2025-3-25 11:02:00 | 只看該作者
23#
發(fā)表于 2025-3-25 13:28:59 | 只看該作者
24#
發(fā)表于 2025-3-25 19:52:59 | 只看該作者
Book 2006n theory. This book—unique in the literature—studies the application of neural networks to the analysis of time series of sea data, namely significant wave heights and sea levels. The particular problem examined as a starting point is the reconstruction of missing data, a general problem that appear
25#
發(fā)表于 2025-3-25 21:39:59 | 只看該作者
26#
發(fā)表于 2025-3-26 04:02:34 | 只看該作者
27#
發(fā)表于 2025-3-26 06:15:56 | 只看該作者
28#
發(fā)表于 2025-3-26 11:32:55 | 只看該作者
Application of Approximation Theory and ARIMA Models,hich are a different version of ANN, already studied and explained in detail in Chapter 5, and the classical autoregressive integrated moving average (ARIMA) models widely used in the framework of time-series analysis. We apply both of them to our problem and we show with some examples that the ANN models have a much better performance.
29#
發(fā)表于 2025-3-26 16:21:41 | 只看該作者
30#
發(fā)表于 2025-3-26 17:04:32 | 只看該作者
Brunello Tirozzi,Silvia Puca,Stefano CorsiniSelf-contained book, unique in the literature.Devoted to the application of neural networks to the concrete problem of time series of sea data, namely significant wave heights and sea levels.Good refe
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 08:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新乐市| 华蓥市| 门头沟区| 怀仁县| 南阳市| 淮北市| 屏东县| 长葛市| 漳浦县| 古交市| 黔西县| 都昌县| 福海县| 汝阳县| 沙雅县| 临沂市| 平顺县| 安仁县| 额济纳旗| 康马县| 天长市| 同仁县| 涡阳县| 和田县| 石狮市| 普定县| 沁源县| 台南县| 崇明县| 郁南县| 江川县| 肃宁县| 大悟县| 班戈县| 东城区| 鹰潭市| 淮安市| 宜春市| 渝中区| 化德县| 新沂市|