找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Nets WIRN VIETRI-97; Proceedings of the 9 Maria Marinaro,Roberto Tagliaferri Conference proceedings 1998 Springer-Verlag London Limi

[復(fù)制鏈接]
樓主: Flexible
31#
發(fā)表于 2025-3-26 22:40:15 | 只看該作者
32#
發(fā)表于 2025-3-27 02:16:17 | 只看該作者
Employment of a Progressive Learning Neural Network for Identification and Controlecause of its inherent capacity of learning on-line. ..After describing the PLN, the generalised and specialised inverse control schemes are introduced and then a method for using the PLN in this kind of control is shown. In particular a new version of this PLN is developed for the on-line control w
33#
發(fā)表于 2025-3-27 06:36:06 | 只看該作者
What Size Needs Testing?capability of a neural network generally demands smaller sample size than training it..We move in an extended PAC learning framework and use some recent results in terms of sentry functions of a concept class to statistically proof our claims.
34#
發(fā)表于 2025-3-27 10:22:29 | 只看該作者
35#
發(fā)表于 2025-3-27 17:15:25 | 只看該作者
36#
發(fā)表于 2025-3-27 20:00:43 | 只看該作者
Sequences of Discrete Hopfield’s Networks for the Maximum Clique Problemthat, in polynomial time, converge to a state representing a clique for a given graph. Some experiments made on the DIMACS benchmark show that the approximated solutions found are promising. Finally, the possibility to extend this technique to other .-hard problems and to implement it onto neural ha
37#
發(fā)表于 2025-3-27 23:23:37 | 只看該作者
38#
發(fā)表于 2025-3-28 03:11:13 | 只看該作者
39#
發(fā)表于 2025-3-28 06:45:09 | 只看該作者
A Distribution-Free VC-Dimension-Based Performance Boundd the target binary function is larger than ε and the empirical error on the examples is smaller than a fixed not-null fraction of ε. The given bounds are independent of the probability distribution on the input space and improve some existing results on generalization abilities of an adaptive binar
40#
發(fā)表于 2025-3-28 13:05:47 | 只看該作者
Attractor Neural Networks as Models of Semantic Memoryn order to model human semantic memory operation. Our simulations show that this model is able to reproduce a particular quantitative feature of this operation observed in experiments with human subjects, i.e. the correlation between high values of the prototypicity of exemplars of a given concept a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 15:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五华县| 巴彦县| 柞水县| 岳西县| 隆回县| 金门县| 扬州市| 宁晋县| 肇东市| 乌苏市| 六盘水市| 京山县| 韩城市| 胶州市| 望都县| 台中县| 怀化市| 楚雄市| 巢湖市| 遂宁市| 灵丘县| 临高县| 榆社县| 湄潭县| 明星| 宜昌市| 玛纳斯县| 蓝山县| 武鸣县| 嘉峪关市| 寿宁县| 揭阳市| 云阳县| 大新县| 临沂市| 威海市| 凤凰县| 厦门市| 九寨沟县| 曲水县| 天全县|