找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 22nd International C Sabri Arik,Tingwen Huang,Qingshan Liu Conference proceedings 2015 Springer Internationa

[復(fù)制鏈接]
查看: 20293|回復(fù): 59
樓主
發(fā)表于 2025-3-21 18:00:22 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Neural Information Processing
副標(biāo)題22nd International C
編輯Sabri Arik,Tingwen Huang,Qingshan Liu
視頻videohttp://file.papertrans.cn/664/663632/663632.mp4
概述Includes supplementary material:
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Neural Information Processing; 22nd International C Sabri Arik,Tingwen Huang,Qingshan Liu Conference proceedings 2015 Springer Internationa
描述.The four volume set LNCS 9489, LNCS 9490, LNCS 9491, andLNCS 9492 constitutes the proceedings of the 22nd International Conference onNeural Information Processing, ICONIP 2015, held in Istanbul, Turkey, inNovember 2015...The 231 full papers presented were carefully reviewed andselected from 375 submissions. The 4 volumes represent topical sectionscontaining articles on Learning Algorithms and Classification Systems;Artificial Intelligence and Neural Networks: Theory, Design, and Applications;Image and Signal Processing; and Intelligent Social Networks..
出版日期Conference proceedings 2015
關(guān)鍵詞Biometrics; data mining; genetic algorithm; pattern recognition; semantic Web; artificial neural networks
版次1
doihttps://doi.org/10.1007/978-3-319-26535-3
isbn_softcover978-3-319-26534-6
isbn_ebook978-3-319-26535-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書(shū)目名稱(chēng)Neural Information Processing影響因子(影響力)




書(shū)目名稱(chēng)Neural Information Processing影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Neural Information Processing網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Neural Information Processing網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Neural Information Processing被引頻次




書(shū)目名稱(chēng)Neural Information Processing被引頻次學(xué)科排名




書(shū)目名稱(chēng)Neural Information Processing年度引用




書(shū)目名稱(chēng)Neural Information Processing年度引用學(xué)科排名




書(shū)目名稱(chēng)Neural Information Processing讀者反饋




書(shū)目名稱(chēng)Neural Information Processing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:00:23 | 只看該作者
Robust Ensemble Classifier Combination Based on Noise Removal with One-Class SVM,et partition to increment classifier model performance. We applied Gini impurity approach to find the best split percentage of noise filter ratio. The filtered sub data set is then used to train individual ensemble models.
板凳
發(fā)表于 2025-3-22 02:09:42 | 只看該作者
Weighted ANN Input Layer for Adaptive Features Selection for Robust Fault Classification,lue vector. Different instances of ANN are then trained and tested to calculate F1_score with the reduced dominant features at different SNRs for each threshold value. Trained ANN with best average classification accuracy among all ANN instances gives us required number of dominant features.
地板
發(fā)表于 2025-3-22 08:05:36 | 只看該作者
Neural Network with Evolutionary Algorithm for Packet Matching,ative procedure. Data experiments show that this new algorithm effectively improves the performance of packet matching compared with the classical algorithms. And it can completely solve the problem of large-scale rule packet matching.
5#
發(fā)表于 2025-3-22 10:41:25 | 只看該作者
A Parallel Sensitive Area Selection-Based Particle Swarm Optimization Algorithm for Fast Solving CNate the validity, we take Zebiak-Cane (ZC) numerical model as a case. Experimental results show that the proposed method can obtain a better CNOP more efficiently than SAEP [.] and PCAGA [.] which are two latest researches on intelligent algorithms for solving CNOP.
6#
發(fā)表于 2025-3-22 16:22:58 | 只看該作者
Semi-supervised Non-negative Local Coordinate Factorization,led examples to be the class indicator. Benefit from the labeled data, SNLCF can boost NMF in clustering the unlabeled data. Experimental results on UCI datasets and two popular face image datasets suggest that SNLCF outperforms the representative methods in terms of both average accuracy and average normalized mutual information.
7#
發(fā)表于 2025-3-22 19:38:07 | 只看該作者
8#
發(fā)表于 2025-3-22 21:55:14 | 只看該作者
Trading Optimally Diversified Portfolios in Emerging Markets with Neuro-Particle Swarm Optimisationo diversity) and that in the case of emerging markets the optimal value for this parameter may be different to the standard investment industry recommendation. Learning is then extended to include this parameter, with out-of-sample testing demonstrating very promising results.
9#
發(fā)表于 2025-3-23 03:06:11 | 只看該作者
10#
發(fā)表于 2025-3-23 09:27:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
木兰县| 日喀则市| 英吉沙县| 田东县| 军事| 抚顺市| 长沙县| 利辛县| 农安县| 滦平县| 皋兰县| 乐昌市| 黄骅市| 绍兴县| 隆昌县| 呼伦贝尔市| 鸡东县| 东莞市| 延安市| 尉犁县| 康平县| 梅州市| 平武县| 什邡市| 重庆市| 达拉特旗| 惠水县| 江口县| 云梦县| 武冈市| 鸡西市| 聂拉木县| 达州市| 大田县| 盱眙县| 如皋市| 巢湖市| 河曲县| 湘西| 乐安县| 侯马市|