找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 29th International C Mohammad Tanveer,Sonali Agarwal,Adam Jatowt Conference proceedings 2023 The Editor(s) (

[復制鏈接]
樓主: LH941
51#
發(fā)表于 2025-3-30 11:58:34 | 只看該作者
Two-Stage Multilayer Perceptron Hawkes Processron Hawkes Process (TMPHP). The model consists of two types of multilayer perceptrons: one that applies MLPs (learning features of each event sequence to capture long-term dependencies between different events) independently for each event sequence, and one that applies MLPs to different event seque
52#
發(fā)表于 2025-3-30 15:26:00 | 只看該作者
Hawkes Process via?Graph Contrastive Discriminant Representation Learning and?Transformer Capturing ntrastive Discriminant representation Learning and Transformer capturing long-term dependencies(GCDRLT) is the two-stage pipeline to enhance the capacity of hidden representation both on long-term dependencies and discriminant feature extraction. Experimental results on multiple datasets validate th
53#
發(fā)表于 2025-3-30 17:01:02 | 只看該作者
54#
發(fā)表于 2025-3-30 22:35:31 | 只看該作者
Data Representation and?Clustering with?Double Low-Rank Constraints the rank of input data and representation coefficients to extract the multi-subspace structure underlying the observed data. The experimental results show that the proposed method has superior performance in the clustering experiments for each dataset.
55#
發(fā)表于 2025-3-31 02:20:16 | 只看該作者
56#
發(fā)表于 2025-3-31 06:55:23 | 只看該作者
O,GPT: A Guidance-Oriented Periodic Testing Framework with?Online Learning, Online Testing, and?Onli the rationality of all selected questions. Finally, to set up the online feedback, we test O.GPT on an on-line simulated environment which can model qualitative development of knowledge proficiency. The results of our experiment conducted on two well-established student response datasets indicate t
57#
發(fā)表于 2025-3-31 09:14:49 | 只看該作者
AFFSRN: Attention-Based Feature Fusion Super-Resolution Networkutational cost and thus improve the network’s performance, we propose the novel deep feature fusion group (DFFG) for feature fusion. Experimental results show that this method achieves a better peak signal-to-noise ratio (PSNR) and computation overhead than the existing super-resolution algorithms.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 01:28
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
尼木县| 民乐县| 巍山| 宁陵县| 天津市| 新干县| 泰兴市| 六安市| 会东县| 马鞍山市| 建湖县| 喀喇| 上杭县| 宣威市| 大同市| 杂多县| 柳江县| 巴林左旗| 澳门| 昌吉市| 东海县| 丹棱县| 林周县| 泗洪县| 江陵县| 浦江县| 涟水县| 临漳县| 阜新市| 济南市| 延吉市| 弥渡县| 岳西县| 临猗县| 合山市| 东兰县| 桂东县| 建德市| 英山县| 西丰县| 攀枝花市|