找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 24th International C Derong Liu,Shengli Xie,El-Sayed M. El-Alfy Conference proceedings 2017 Springer Interna

[復(fù)制鏈接]
查看: 50992|回復(fù): 58
樓主
發(fā)表于 2025-3-21 17:00:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Neural Information Processing
副標(biāo)題24th International C
編輯Derong Liu,Shengli Xie,El-Sayed M. El-Alfy
視頻videohttp://file.papertrans.cn/664/663611/663611.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Neural Information Processing; 24th International C Derong Liu,Shengli Xie,El-Sayed M. El-Alfy Conference proceedings 2017 Springer Interna
描述The six volume set LNCS 10634, LNCS 10635, LNCS 10636, LNCS 10637, LNCS 10638, and LNCS 10639 constitues the proceedings of the 24rd International Conference on Neural Information Processing, ICONIP 2017, held in Guangzhou, China, in November 2017. The 563 ?full papers presented were carefully reviewed and selected from 856 submissions. The 6 volumes are organized in topical sections on?Machine Learning,?Reinforcement Learning, Big Data Analysis, Deep Learning, Brain-Computer Interface, Computational Finance, Computer Vision, Neurodynamics, Sensory Perception and Decision Making, Computational Intelligence, Neural Data Analysis, Biomedical Engineering, Emotion and Bayesian Networks, Data Mining, Time-Series Analysis, Social Networks, Bioinformatics, Information Security and Social Cognition, Robotics and Control, Pattern Recognition, Neuromorphic Hardware and Speech Processing.?.
出版日期Conference proceedings 2017
關(guān)鍵詞Adaptive dynamic programming; Artificial intelligence; Biologically inspired computing; Brain-computer
版次1
doihttps://doi.org/10.1007/978-3-319-70139-4
isbn_softcover978-3-319-70138-7
isbn_ebook978-3-319-70139-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Neural Information Processing影響因子(影響力)




書目名稱Neural Information Processing影響因子(影響力)學(xué)科排名




書目名稱Neural Information Processing網(wǎng)絡(luò)公開度




書目名稱Neural Information Processing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Neural Information Processing被引頻次




書目名稱Neural Information Processing被引頻次學(xué)科排名




書目名稱Neural Information Processing年度引用




書目名稱Neural Information Processing年度引用學(xué)科排名




書目名稱Neural Information Processing讀者反饋




書目名稱Neural Information Processing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:54:00 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:30:32 | 只看該作者
Modeling Server Workloads for Campus Email Traffic Using Recurrent Neural Networksestigate the use of a Recurrent Neural Network (RNN) as time series modeling to model the server workload, which is a first for such a problem. Our results show that the use of RNN modeling leads in most cases to high modeling accuracy for all four campus email traffic datasets.
地板
發(fā)表于 2025-3-22 05:39:27 | 只看該作者
Accelerated Matrix Factorisation Method for Fuzzy Clustering also propose an efficient method to solve the proximal mapping problem when implementing nmAPG. Finally, the experiment results on synthetic and real-world datasets show the performances and feasibility of our method.
5#
發(fā)表于 2025-3-22 12:09:30 | 只看該作者
Mining Mobile Phone Base Station Data Based on Clustering Algorithms with Application to Public Trafodeling results of (1). Experimental results show that our model based on DBSCAN and GMM can effectively mine the significance of historical data of mobile phone base station and can successfully be applied to real-world problems like public traffic route design.
6#
發(fā)表于 2025-3-22 15:48:40 | 只看該作者
A Hybrid Method of Sine Cosine Algorithm and Differential Evolution for Feature Selection which helps the SCA to skip the local point. The proposed method is compared with other three algorithms to select the subset of features used eight UCI datasets. The experiments results showed that the proposed method provided better results than other methods in terms of performance measures and statistical test.
7#
發(fā)表于 2025-3-22 17:08:30 | 只看該作者
8#
發(fā)表于 2025-3-23 00:48:14 | 只看該作者
9#
發(fā)表于 2025-3-23 03:14:39 | 只看該作者
Incremental Matrix Reordering for Similarity-Based Dynamic Data Setspose an original algorithm for the incremental reordering of a similarity matrix adapted to dynamic data sets. The proposed method is compared with state-of-the-art algorithms for static data-sets and applied to a dynamic data-set in order to demonstrate its efficiency.
10#
發(fā)表于 2025-3-23 07:55:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 10:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
舟山市| 泰来县| 灵川县| 秦皇岛市| 罗源县| 南通市| 郸城县| 泰来县| 安龙县| 沙坪坝区| 平潭县| 龙里县| 静乐县| 永靖县| 正定县| 安阳县| 民乐县| 抚松县| 兴文县| 太谷县| 淄博市| 抚松县| 庐江县| 潢川县| 南郑县| 太仓市| 文成县| 大悟县| 姚安县| 和田县| 满城县| 陵川县| 义乌市| 蕲春县| 云霄县| 东台市| 益阳市| 青冈县| 吉林省| 磐石市| 额济纳旗|