找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 26th International C Tom Gedeon,Kok Wai Wong,Minho Lee Conference proceedings 2019 Springer Nature Switzerla

[復(fù)制鏈接]
查看: 43248|回復(fù): 59
樓主
發(fā)表于 2025-3-21 16:30:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Neural Information Processing
副標(biāo)題26th International C
編輯Tom Gedeon,Kok Wai Wong,Minho Lee
視頻videohttp://file.papertrans.cn/664/663608/663608.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Neural Information Processing; 26th International C Tom Gedeon,Kok Wai Wong,Minho Lee Conference proceedings 2019 Springer Nature Switzerla
描述.The three-volume set of LNCS 11953, 11954, and 11955 constitutes the proceedings of the 26th International Conference on Neural Information Processing, ICONIP 2019, held in Sydney, Australia, in December 2019..The 173 full papers presented were carefully reviewed and selected from 645 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains.?The second volume, LNCS 11954, is organized in topical sections on image processing by neural techniques; learning from incomplete data; model compression and optimisation; neural learning models; neural network applications; and social network computing..
出版日期Conference proceedings 2019
關(guān)鍵詞artificial intelligence; classification; cognitive neurosciences; computational linguistics; computation
版次1
doihttps://doi.org/10.1007/978-3-030-36711-4
isbn_softcover978-3-030-36710-7
isbn_ebook978-3-030-36711-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Neural Information Processing影響因子(影響力)




書目名稱Neural Information Processing影響因子(影響力)學(xué)科排名




書目名稱Neural Information Processing網(wǎng)絡(luò)公開度




書目名稱Neural Information Processing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Neural Information Processing被引頻次




書目名稱Neural Information Processing被引頻次學(xué)科排名




書目名稱Neural Information Processing年度引用




書目名稱Neural Information Processing年度引用學(xué)科排名




書目名稱Neural Information Processing讀者反饋




書目名稱Neural Information Processing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:50:04 | 只看該作者
Multi-person 3D Pose Estimation from Monocular Image Sequencessidering the temporal smoothness. We evaluate our framework on the Human3.6M dataset and the multi-person image sequence captured by ourselves. The quantitative results on the Human3.6M dataset and the qualitative results on our constructed test data demonstrate the effectiveness of our proposed method.
板凳
發(fā)表于 2025-3-22 01:55:57 | 只看該作者
Shape Description and Retrieval in a Fused Scale Spacee are extracted across scales. Finally, shape retrieval is conducted by an integration of the retrieval results individually yielded at multiple scales. Experimental results on benchmark datasets validate the accuracy, efficiency and robustness of our proposed method.
地板
發(fā)表于 2025-3-22 06:02:48 | 只看該作者
Gated Contiguous Memory U-Net for Single Image Dehazingcombine the features of different levels. We evaluate our proposed method using two public image dehazing benchmarks. The experiments demonstrate that our network can achieve a state-of-the-art performance when compared with other popular methods.
5#
發(fā)表于 2025-3-22 12:44:28 | 只看該作者
Conference proceedings 2019 different domains.?The second volume, LNCS 11954, is organized in topical sections on image processing by neural techniques; learning from incomplete data; model compression and optimisation; neural learning models; neural network applications; and social network computing..
6#
發(fā)表于 2025-3-22 13:41:13 | 只看該作者
Conference proceedings 2019g, ICONIP 2019, held in Sydney, Australia, in December 2019..The 173 full papers presented were carefully reviewed and selected from 645 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across
7#
發(fā)表于 2025-3-22 18:12:38 | 只看該作者
0302-9743 Processing, ICONIP 2019, held in Sydney, Australia, in December 2019..The 173 full papers presented were carefully reviewed and selected from 645 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniq
8#
發(fā)表于 2025-3-23 01:01:22 | 只看該作者
9#
發(fā)表于 2025-3-23 04:46:03 | 只看該作者
STNet: A Style Transformation Network for Deep Image Steganographyarbitrary size with 0.06 bit per pixel, improving over other deep steganographic models which only can embed fixed-length secret. Experiment results demonstrate that our STNet can achieve great visual effect, security, and reliability.
10#
發(fā)表于 2025-3-23 08:52:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 06:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柳江县| 嵩明县| 云霄县| 耿马| 息烽县| 青州市| 微博| 松桃| 蓬莱市| 文山县| 宜章县| 若尔盖县| 潢川县| 阿图什市| 兴化市| 浦县| 东乡族自治县| 富裕县| 苍山县| 鹤岗市| 天津市| 越西县| 大埔区| 墨竹工卡县| 青铜峡市| 绥化市| 汪清县| 卓资县| 靖江市| 北票市| 淳安县| 虎林市| 仁寿县| 樟树市| 大洼县| 通海县| 旬阳县| 崇阳县| 全椒县| 祁阳县| 周至县|