找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 22nd International C Sabri Arik,Tingwen Huang,Qingshan Liu Conference proceedings 2015 Springer Internationa

[復(fù)制鏈接]
樓主: ODE
11#
發(fā)表于 2025-3-23 10:24:30 | 只看該作者
Deep Convolutional Neural Networks for Human Activity Recognition with Smartphone Sensors,local dependency characteristics. Moreover, activities tend to be hierarchical and translation invariant in nature. Consequently, convolutional neural networks (convnet) exploit these characteristics, which make it appropriate in dealing with time-series sensor data. In this paper, we propose an arc
12#
發(fā)表于 2025-3-23 15:48:44 | 只看該作者
Concentration Monitoring with High Accuracy but Low Cost EEG Device,rocessing in human brain. To understand the concentration process of humans, the underlying neural mechanism needs to be explored. EEG device is a promising device to understand underlying neural mechanism of various cognitive functions. In this paper, we propose an accurate concentration monitoring
13#
發(fā)表于 2025-3-23 20:52:31 | 只看該作者
14#
發(fā)表于 2025-3-24 01:43:44 | 只看該作者
15#
發(fā)表于 2025-3-24 05:20:29 | 只看該作者
A Study to Investigate Different EEG Reference Choices in Diagnosing Major Depressive Disorder,iency during diagnosis of psychiatric conditions, e.g., major depressive disorder (MDD). In literature, various EEG references have been proposed, however, none of them is considered as gold-standard [.]. Therefore, this study aims to evaluate 3 EEG references including infinity reference (IR), aver
16#
發(fā)表于 2025-3-24 08:20:42 | 只看該作者
17#
發(fā)表于 2025-3-24 14:21:15 | 只看該作者
Enhancing Performance of EEG-based Emotion Recognition Systems Using Feature Smoothing,that the correlation between EEG and emotion characteristics is not taken into account. There are the differences among EEG features, even with the same emotion state in adjacent time because EEG extracted features usually change dramatically, while emotion states vary gradually or smoothly. In addi
18#
發(fā)表于 2025-3-24 16:57:58 | 只看該作者
19#
發(fā)表于 2025-3-24 20:53:50 | 只看該作者
Mining Top-k Minimal Redundancy Frequent Patterns over Uncertain Databases,al approaches have been proposed for mining high significance frequent itemsets over uncertain data, however, previous algorithms yield many redundant frequent itemsets and require to set an appropriate user specified threshold which is difficult for users. In this paper, we formally define the prob
20#
發(fā)表于 2025-3-25 00:05:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴隆县| 潼关县| 玉龙| 当雄县| 抚远县| 闻喜县| 临汾市| 民丰县| 兰溪市| 金平| 绥德县| 闽侯县| 迁西县| 张北县| 红河县| 来凤县| 白沙| 泸州市| 内丘县| 吉首市| 图木舒克市| 淳安县| 子长县| 尖扎县| 泗阳县| 广元市| 云龙县| 阿拉善右旗| 南充市| 宁远县| 自治县| 南宫市| 扎兰屯市| 浦城县| 沾化县| 西林县| 靖边县| 中牟县| 克山县| 永丰县| 宝清县|