找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable

[復制鏈接]
樓主: 請回避
11#
發(fā)表于 2025-3-23 09:55:14 | 只看該作者
12#
發(fā)表于 2025-3-23 15:09:16 | 只看該作者
13#
發(fā)表于 2025-3-23 19:27:11 | 只看該作者
Optimizing 3D UAV Path Planning: A Multi-strategy Enhanced Beluga Whale Optimizer a novel approach to address the problem by incorporating flight distance, threat cost, flight altitude and path smoothness constraints into a comprehensive cost function. The current popular metaheuristic algorithm is utilized to solve for the closest globally optimal UAV flight path. To overcome t
14#
發(fā)表于 2025-3-23 23:21:20 | 只看該作者
15#
發(fā)表于 2025-3-24 04:30:52 | 只看該作者
PatchFinger: A Model Fingerprinting Scheme Based on?Adversarial Patcharking schemes based on backdoors require explicit embedding of the backdoor, which changes the structure and parameters. Model fingerprinting based on adversarial examples does not require any modification of the model, but is limited by the characteristics of the original task and not versatile en
16#
發(fā)表于 2025-3-24 09:28:43 | 只看該作者
Attribution of?Adversarial Attacks via?Multi-task Learninginal examples. Many works focus on adversarial detection and adversarial training to defend against adversarial attacks. However, few works explore the tool-chains behind adversarial examples, which is called Adversarial Attribution Problem (AAP). In this paper, AAP is defined as the recognition of
17#
發(fā)表于 2025-3-24 14:39:20 | 只看該作者
18#
發(fā)表于 2025-3-24 15:07:04 | 只看該作者
A Novel Machine Learning Model Using CNN-LSTM Parallel Networks for Predicting Ship Fuel Consumptionsions for ships. This paper proposes a novel model of parallel network by combining convolutional neural network and long short-term memory (CNN-LSTM). The proposed model integrates three advantages. The CNN part of proposed model can extract spatial features, the LSTM part of proposed model can cap
19#
發(fā)表于 2025-3-24 20:09:34 | 只看該作者
20#
發(fā)表于 2025-3-25 02:00:57 | 只看該作者
Learning Primitive-Aware Discriminative Representations for Few-Shot Learningome works about FSL have yielded promising classification performance, where the image-level feature is used to calculate the similarity among samples for classification. However, the image-level feature ignores abundant fine-grained and structural information of objects that could be transferable a
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-19 19:43
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新密市| 孝昌县| 凌源市| 夏津县| 麻江县| 泸州市| 巨野县| 盘山县| 贵南县| 呼图壁县| 房产| 镇坪县| 广德县| 新田县| 裕民县| 鄄城县| 思茅市| 宁河县| 西平县| 泽普县| 安庆市| 山阳县| 昌江| 鸡西市| 萨迦县| 温宿县| 绥化市| 新化县| 美姑县| 沾益县| 商洛市| 白朗县| 峨眉山市| 思南县| 招远市| 栾川县| 沂南县| 栖霞市| 河津市| 嵊州市| 本溪市|