找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: Flange
41#
發(fā)表于 2025-3-28 18:19:16 | 只看該作者
42#
發(fā)表于 2025-3-28 21:04:25 | 只看該作者
Improving Out-of-Distribution Detection with?Margin-Based Prototype Learningntly improved OOD detection performance by optimizing the representation space. However, practical scenarios present a challenge where OOD samples near class boundaries may overlap with in-distribution samples in the feature space, resulting in misclassification, and few methods have considered the
43#
發(fā)表于 2025-3-29 01:37:36 | 只看該作者
Text-to-Image Synthesis with?Threshold-Equipped Matching-Aware GANtering inaccurate negative samples, the discriminator can more accurately determine whether the generator has generated the images correctly according to the descriptions. In addition, to enhance the discriminative model’s ability to discriminate and capture key semantic information, a word fine-gra
44#
發(fā)表于 2025-3-29 06:49:01 | 只看該作者
45#
發(fā)表于 2025-3-29 10:51:24 | 只看該作者
Dual-Branch Contrastive Learning for?Network Representation Learning network representation learning. However, existing GCL-based network representation methods mostly use a single-branch contrastive approach, which makes it difficult to learn deeper semantic relationships and is easily affected by noisy connections during the process of obtaining global structural
46#
發(fā)表于 2025-3-29 14:34:51 | 只看該作者
Multi-granularity Contrastive Siamese Networks for?Abstractive Text Summarizationformative summaries. Sequence-to-Sequence (Seq2 Seq) models have achieved good results in abstractive text summarization in recent years. However, such models are often sensitive to noise information in the training data and exhibit fragility in practical applications. To enhance the denoising abili
47#
發(fā)表于 2025-3-29 18:33:13 | 只看該作者
Joint Entity and?Relation Extraction for?Legal Documents Based on?Table Fillingstructured triplets from rich unstructured legal texts. However, the existing methods for joint entity relation extraction in legal judgment documents often lack domain-specific knowledge, and are difficult to effectively solve the problem of entity overlap in legal texts. To address these issues, w
48#
發(fā)表于 2025-3-29 21:40:42 | 只看該作者
49#
發(fā)表于 2025-3-30 03:14:28 | 只看該作者
50#
發(fā)表于 2025-3-30 06:31:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆昌县| 海丰县| 油尖旺区| 萨嘎县| 历史| 江西省| 台江县| 乐业县| 车致| 益阳市| 福清市| 四子王旗| 海宁市| 手游| 福安市| 湟中县| 额济纳旗| 张家川| 高安市| 彭州市| 阳高县| 鱼台县| 宁城县| 鸡东县| 嵩明县| 盖州市| 康保县| 南汇区| 沂源县| 眉山市| 宽城| 江津市| 图片| 攀枝花市| 沧州市| 班戈县| 曲阳县| 思茅市| 庄浪县| 洛扎县| 鲁甸县|