找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable

[復制鏈接]
樓主: 變成小松鼠
11#
發(fā)表于 2025-3-23 10:48:24 | 只看該作者
OD-Enhanced Dynamic Spatial-Temporal Graph Convolutional Network for?Metro Passenger Flow Predictionfirst challenge is extracting the diverse passenger flow patterns at different stations, e.g., stations near residential areas and stations near commercial areas, while the second one is to model the complex dynamic spatial-temporal correlations caused by Origin-Destination (OD) flows. Existing stud
12#
發(fā)表于 2025-3-23 16:22:31 | 只看該作者
Enhancing Heterogeneous Graph Contrastive Learning with?Strongly Correlated Subgraphsews of a graph, obtaining feature representations for graph data in an unsupervised manner without the need for manual labeling. Most existing node-level graph contrastive learning models only consider embeddings of the same node in different views as positive sample pairs, ignoring rich inherent ne
13#
發(fā)表于 2025-3-23 19:56:20 | 只看該作者
14#
發(fā)表于 2025-3-24 01:25:45 | 只看該作者
MFSFFuse: Multi-receptive Field Feature Extraction for?Infrared and?Visible Image Fusion Using Self-litate subsequent visual tasks. Most of the current fusion methods suffer from incomplete feature extraction or redundancy, resulting in indistinctive targets or lost texture details. Moreover, the infrared and visible image fusion lacks ground truth, and the fusion results obtained by using unsuper
15#
發(fā)表于 2025-3-24 06:11:50 | 只看該作者
Progressive Temporal Transformer for?Bird’s-Eye-View Camera Pose Estimation focus on ground view in indoor or outdoor scenes. However, camera relocalization on unmanned aerial vehicles is less focused. Also, frequent view changes and a large depth of view make it more challenging. In this work, we establish a Bird’s-Eye-View (BEV) dataset for camera relocalization, a large
16#
發(fā)表于 2025-3-24 09:09:59 | 只看該作者
17#
發(fā)表于 2025-3-24 10:44:40 | 只看該作者
Stereo Visual Mesh for?Generating Sparse Semantic Maps at?High Frame Ratesroduces a Visual Mesh based stereo vision method for sparse stereo semantic segmentation. A dataset of simulated 3D scenes was generated and used for training to show that the method is capable of processing high resolution stereo inputs to generate both left and right sparse semantic maps. The new
18#
發(fā)表于 2025-3-24 16:50:19 | 只看該作者
19#
發(fā)表于 2025-3-24 21:21:53 | 只看該作者
Exploring Adaptive Regression Loss and?Feature Focusing in?Industrial Scenarioss vary greatly-for example, the variety of texture shapes and the complexity of background information. A lightweight Focus Encoder-Decoder Network (FEDNet) is presented to solve these problems. Specifically, the novelty of FEDNet is as follows: First, the feature focusing module (FFM) is designed t
20#
發(fā)表于 2025-3-25 01:20:45 | 只看該作者
Optimal Task Grouping Approach in?Multitask Learningrove the performance of the other tasks. However, the tasks are not always constructive on each other in the multi-task formulation and might play negatively during the training process leading to poor results. Thus, this study focuses on finding the optimal group of tasks that should be trained tog
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
全椒县| 福安市| 通山县| 苏州市| 巢湖市| 麦盖提县| 丰原市| 中江县| 什邡市| 湘阴县| 博湖县| 玉溪市| 沁水县| 南陵县| 长沙市| 邯郸县| 石屏县| 东海县| 军事| 阳高县| 新野县| 定安县| 正阳县| 绥江县| 临颍县| 桐乡市| 湛江市| 安达市| 东宁县| 固始县| 石首市| 奉贤区| 安陆市| 宣武区| 新丰县| 福清市| 峨边| 沾益县| 同江市| 湘潭县| 绥化市|