找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Network Security Empowered by Artificial Intelligence; Yingying Chen,Jie Wu,Xiaogang Wang Book 2024 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: 兇惡的老婦
31#
發(fā)表于 2025-3-26 22:07:39 | 只看該作者
32#
發(fā)表于 2025-3-27 01:36:27 | 只看該作者
Deep Learning for Robust and Secure Wireless Communicationsanging from information access to social networking. However, the emergence of numerous wireless applications is driving the demand for spectrum to unprecedented levels. Simultaneously, wireless systems are becoming increasingly software-driven, reducing the barrier for wireless threats such as inte
33#
發(fā)表于 2025-3-27 07:54:04 | 只看該作者
34#
發(fā)表于 2025-3-27 11:57:23 | 只看該作者
35#
發(fā)表于 2025-3-27 14:03:06 | 只看該作者
Localizing Spectrum Offenders Using Crowdsourcing over large areas in order to provide protection to spectrum users. This chapter explores various recent RSS-based localization techniques which use crowdsourced measurements, including path loss models, fingerprinting, and machine learning-based approaches. Our focus is on utilizing convolutional n
36#
發(fā)表于 2025-3-27 20:38:19 | 只看該作者
37#
發(fā)表于 2025-3-28 00:29:49 | 只看該作者
Security and Privacy of Augmented Reality Systemsem increasingly popular among mass consumers, in industry, and even in military training. In order to support immersive and realistic user experience, AR systems rely on real-time sensing through various types of sensors to understand the physical environment, make intelligent decisions, and render
38#
發(fā)表于 2025-3-28 03:02:00 | 只看該作者
Securing Augmented Reality Applicationsalthcare. However, these applications face numerous security challenges, such as data privacy, authentication, and authorization. In this chapter, we explore the use of Artificial Intelligence and Machine Learning techniques to enhance the security of AR applications. We discuss the different securi
39#
發(fā)表于 2025-3-28 08:38:20 | 只看該作者
On the Robustness of Image-Based Malware Detection Against Adversarial Attacksnstrated in various network-security-oriented applications such as intrusion detection, cyber threat intelligence, vulnerability discovery, and malware detection. Nevertheless, recent research studies have shown that crafted adversarial samples can be used to evade malware detection models. Even tho
40#
發(fā)表于 2025-3-28 11:47:16 | 只看該作者
The Cost of Privacy: A Comprehensive Analysis of the Security Issues in Federated Learningn extensive model trained in a broader dataset without ever sharing their private data directly. FL combines multiple local models into a global model, thereby diminishing the need for individual participants to have large datasets. This decentralized nature of FL makes it more susceptible to advers
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临颍县| 容城县| 铜山县| 仙桃市| 喜德县| 安康市| 昌邑市| 嘉祥县| 古交市| 庆阳市| 壤塘县| 汉寿县| 抚顺市| 岳池县| 黑龙江省| 花莲市| 施秉县| 嘉荫县| 灵武市| 全南县| 蓝田县| 渑池县| 边坝县| 锦州市| 威信县| 依兰县| 罗田县| 康乐县| 丹阳市| 炎陵县| 张家川| 含山县| 余庆县| 寿阳县| 灌阳县| 疏附县| 西青区| 正安县| 萨迦县| 荃湾区| 通河县|