找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Network Coding and Subspace Designs; Marcus Greferath,Mario Osvin Pav?evi?,María ángele Book 2018 Springer International Publishing AG 201

[復制鏈接]
樓主: KEN
31#
發(fā)表于 2025-3-26 22:16:28 | 只看該作者
Diego Napp,Filipa Santanamones. The equilibrium point of this system, commonly referred to as the “set point”’, is individually determined. This means that determining the correct amount of medication to be administered to patients with hypothyroidism requires several treatment appointments creating an extended treatment pr
32#
發(fā)表于 2025-3-27 01:29:50 | 只看該作者
33#
發(fā)表于 2025-3-27 07:58:17 | 只看該作者
34#
發(fā)表于 2025-3-27 10:08:11 | 只看該作者
Constructions of Cyclic Subspace Codes and Maximum Rank Distance Codesre the main?tools used to introduce both constructions in this chapter. In the construction of cyclic subspace codes, codewords are considered as the root spaces of some subspace polynomials (which are a particular type of linearized polynomials). In this set up, some algebraic manipulations on the
35#
發(fā)表于 2025-3-27 13:48:20 | 只看該作者
36#
發(fā)表于 2025-3-27 20:53:40 | 只看該作者
Multi-shot Network Codinghas opened a major research area in communication technology. Here, the network is allowed to change very quickly, which is the case in many mobile applications. The problem is suitably modeled via the operator channel, which makes a very clear connection between network coding and classical informa
37#
發(fā)表于 2025-3-28 01:03:15 | 只看該作者
Geometrical Aspects of Subspace Codesor space .(.,?.) is equivalent to the geometry of the subspaces of a projective space PG., problems on subspace codes can be investigated by using geometrical arguments. Here, we illustrate this approach by showing some recent results on subspace codes, obtained via geometrical arguments. We discuss
38#
發(fā)表于 2025-3-28 02:48:02 | 只看該作者
Partial Spreads and Vector Space Partitions decades. Not surprisingly, for this subclass typically the sharpest bounds on the maximal code size are known. The seminal works of Beutelspacher and Drake & Freeman on partial spreads date back to 1975 and 1979, respectively. From then until recently, there was almost no progress besides some comp
39#
發(fā)表于 2025-3-28 09:14:15 | 只看該作者
40#
發(fā)表于 2025-3-28 12:36:52 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 00:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
长汀县| 潍坊市| 宝鸡市| 舒城县| 平凉市| 青海省| 来安县| 曲水县| 云林县| 麦盖提县| 海安县| 北安市| 阆中市| 句容市| 屏东县| 鹤壁市| 肥东县| 南投市| 巴彦淖尔市| 阿拉善盟| 承德县| 犍为县| 自治县| 孟津县| 徐汇区| 梅河口市| 黄梅县| 满洲里市| 长丰县| 五台县| 石门县| 广丰县| 北京市| 梁平县| 富平县| 叙永县| 红安县| 察雅县| 白山市| 玛纳斯县| 和田市|