找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nearrings, Nearfields and K-Loops; Proceedings of the C Gerhard Saad,Momme Johs Thomsen Conference proceedings 1997 Kluwer Academic Publish

[復(fù)制鏈接]
樓主: incompatible
31#
發(fā)表于 2025-3-26 22:47:39 | 只看該作者
On Involution Sets Induced by Neardomainsfinite or of characteristic 3 has the property: .. is a group if . is embeddable in a sharply 2-transitive permutation group. The main result of this paper is that this holds in general: For each specific involution set . which is finite or of characteristic 3 holds: .. is a group.
32#
發(fā)表于 2025-3-27 02:22:38 | 只看該作者
33#
發(fā)表于 2025-3-27 08:26:00 | 只看該作者
t der Bundeswehr Hamburg, from July 30 to August 06, 1995. This Conference was attended by 70 mathematicians and many accompanying persons who represented 22 different countries from all five continents. Thus it was the largest conference devoted entirely to nearrings and nearfields. The first of th
34#
發(fā)表于 2025-3-27 10:05:07 | 只看該作者
35#
發(fā)表于 2025-3-27 16:25:31 | 只看該作者
Ordered Nearfieldsogies of nearfield orders were studied by H. Wefelscheid [23]. He remarked that they need not be nearfield topologies. D. Gr?ger [4] added numerous new results and investigated .-couplings on ordered transcendental field extensions at great length.
36#
發(fā)表于 2025-3-27 20:53:03 | 只看該作者
37#
發(fā)表于 2025-3-27 21:55:04 | 只看該作者
The Structure of Ω-Groupsxisting for groups or rings (non-associative). Two fundamental notions relating to these algebras are those of nilpotency and solubility. It is not immediately clear that for these algebras such notions can be unified. However, reasonably deep underlying unification, that also includes all Ω-groups can be achieved.
38#
發(fā)表于 2025-3-28 02:57:28 | 只看該作者
Involutions on Universal AlgebrasFocus then turns to algebras with two binary operations, particularly near-rings and rings. Subdirectly irreducible objects in the categories of distributive near-rings and of rings are characterized in greater detail, with close attention given to their additive structure.
39#
發(fā)表于 2025-3-28 07:30:27 | 只看該作者
40#
發(fā)表于 2025-3-28 11:53:47 | 只看該作者
Gary F. Birkenmeier,Henry E. Heatherly,Günter F. Pilz
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金坛市| 墨竹工卡县| 平顺县| 萨迦县| 深州市| 镇赉县| 嘉定区| 阿图什市| 伽师县| 南通市| 名山县| 五台县| 乐都县| 台前县| 邵武市| 迁西县| 来宾市| 文水县| 水城县| 吕梁市| 南雄市| 庆阳市| 浦城县| 陇西县| 郯城县| 通化县| 上思县| 噶尔县| 凤山市| 宜丰县| 壶关县| 伊通| 宣化县| 濮阳市| 西华县| 大竹县| 米林县| 马关县| 宾川县| 九龙县| 洛扎县|