找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nearly Integrable Infinite-Dimensional Hamiltonian Systems; Sergej B. Kuksin Book 1993 Springer-Verlag Berlin Heidelberg 1993 Hamiltonian

[復(fù)制鏈接]
查看: 26517|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:38:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Nearly Integrable Infinite-Dimensional Hamiltonian Systems
編輯Sergej B. Kuksin
視頻videohttp://file.papertrans.cn/663/662322/662322.mp4
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Nearly Integrable Infinite-Dimensional Hamiltonian Systems;  Sergej B. Kuksin Book 1993 Springer-Verlag Berlin Heidelberg 1993 Hamiltonian
描述The book is devoted to partial differential equations ofHamiltonian form,close to integrable equations. For suchequations a KAM-like theorem is proved, stating thatsolutions of the unperturbed equation that are quasiperiodicin time mostly persist in the perturbed one. The theoremisapplied to classical nonlinear PDE‘s with one-dimensionalspacevariable such as the nonlinear string and nonlinearSchr|dinger equation andshow that the equations have"regular" (=time-quasiperiodic and time-periodic) solutionsin rich supply.These results cannot beobtained by other techniques. Thebook will thus be of interest tomathematicians andphysicists working with nonlinear PDE‘s.An extensivesummary of the results and of related topics isprovided in the Introduction. All the nontraditionalmaterial used is discussed in the firstpart of the book andin five appendices.
出版日期Book 1993
關(guān)鍵詞Hamiltonian System; KAM-theory; differential equation; infinite-dimensional; integrable systems; partial
版次1
doihttps://doi.org/10.1007/BFb0092243
isbn_softcover978-3-540-57161-2
isbn_ebook978-3-540-47920-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1993
The information of publication is updating

書目名稱Nearly Integrable Infinite-Dimensional Hamiltonian Systems影響因子(影響力)




書目名稱Nearly Integrable Infinite-Dimensional Hamiltonian Systems影響因子(影響力)學(xué)科排名




書目名稱Nearly Integrable Infinite-Dimensional Hamiltonian Systems網(wǎng)絡(luò)公開度




書目名稱Nearly Integrable Infinite-Dimensional Hamiltonian Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nearly Integrable Infinite-Dimensional Hamiltonian Systems被引頻次




書目名稱Nearly Integrable Infinite-Dimensional Hamiltonian Systems被引頻次學(xué)科排名




書目名稱Nearly Integrable Infinite-Dimensional Hamiltonian Systems年度引用




書目名稱Nearly Integrable Infinite-Dimensional Hamiltonian Systems年度引用學(xué)科排名




書目名稱Nearly Integrable Infinite-Dimensional Hamiltonian Systems讀者反饋




書目名稱Nearly Integrable Infinite-Dimensional Hamiltonian Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:16:56 | 只看該作者
https://doi.org/10.1007/BFb0092243Hamiltonian System; KAM-theory; differential equation; infinite-dimensional; integrable systems; partial
板凳
發(fā)表于 2025-3-22 02:45:43 | 只看該作者
978-3-540-57161-2Springer-Verlag Berlin Heidelberg 1993
地板
發(fā)表于 2025-3-22 04:57:19 | 只看該作者
5#
發(fā)表于 2025-3-22 09:20:22 | 只看該作者
improvement of the lives of people in thecommunity - as the lives are lived on a day-to-day basis.However, there has been a long tradition of such `OutreachScholarship‘ in America, and this focus is gaining renewed attention,at least in part, because policy makers and philanthropicorganizations are
6#
發(fā)表于 2025-3-22 16:40:23 | 只看該作者
7#
發(fā)表于 2025-3-22 20:41:38 | 只看該作者
Sergej B. Kuksinhine learning forecasting methods in contrast to traditional forecasting methods, specifically in the supermarkets and grocery stores industry. The main two goals of this research are to close a gap in research about the potential of machine learning forecasting methods and to inform retail professi
8#
發(fā)表于 2025-3-23 00:09:28 | 只看該作者
9#
發(fā)表于 2025-3-23 04:49:12 | 只看該作者
10#
發(fā)表于 2025-3-23 08:20:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 17:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洞口县| 南安市| 兴宁市| 额尔古纳市| 铜梁县| 南昌县| 大名县| 芦山县| 邻水| 额尔古纳市| 周口市| 准格尔旗| 仁怀市| 遵义市| 巴林右旗| 长沙县| 阿鲁科尔沁旗| 綦江县| 兴城市| 香格里拉县| 千阳县| 嘉荫县| 峡江县| 仁寿县| 富川| 建宁县| 聊城市| 腾冲县| 拜城县| 博野县| 余姚市| 荆州市| 融水| 同仁县| 碌曲县| 黎川县| 南安市| 永康市| 安徽省| 阿坝| 达日县|