找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural and Gauge Natural Formalism for Classical Field Theorie; A Geometric Perspect Lorenzo Fatibene,Mauro Francaviglia Book 2003 Springe

[復(fù)制鏈接]
樓主: FORGE
31#
發(fā)表于 2025-3-26 21:52:41 | 只看該作者
32#
發(fā)表于 2025-3-27 02:50:32 | 只看該作者
33#
發(fā)表于 2025-3-27 05:32:23 | 只看該作者
The Lagrangian Formalismortant algebraic Lemmas are presented in an abstract and general form and they are then applied to Variational Calculus to obtain the relevant quantities for a general Field Theory. The approach based on the Poincaré-Cartan form is also briefly discussed. Then symmetries and conserved quantities are
34#
發(fā)表于 2025-3-27 12:26:30 | 只看該作者
Natural Theoriess on a surface, General Relativity in its metric formulation and metric-affine formulation..The reader should master Natural Bundles together with their lift properties and Lie derivatives (see Chapter 4) as well as the Lagrangian formalism introduced in Chapter 6.
35#
發(fā)表于 2025-3-27 13:45:47 | 只看該作者
36#
發(fā)表于 2025-3-27 21:46:16 | 只看該作者
Spin Structures and Spin Frameseeded below. Then we shall introduce . in their standard formulation and their relations with the Dirac operator. Thence the . will be introduced and used to provide a formulation of gravity in interaction with spinor fields.
37#
發(fā)表于 2025-3-28 01:25:41 | 只看該作者
Spinor Theoriess neutrino theory as well as the Wess-Zumino model which deals with Majorana anticommuting spinors..The reader should be familiar with the material of Chapter 7 (gauge natural theories) and Chapter 9 (spin frames).
38#
發(fā)表于 2025-3-28 03:47:17 | 只看該作者
Lorenzo Fatibene,Mauro Francaviglia self-concept clarity across the lifespan..Self-concept clarity and romantic relationships..Who am I and why does it matter? Linking personal identity and self-concept clarity..Consequences of self-concept clar978-3-319-89082-1978-3-319-71547-6
39#
發(fā)表于 2025-3-28 07:52:26 | 只看該作者
40#
發(fā)表于 2025-3-28 12:48:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 13:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂托克旗| 太白县| 竹溪县| 尚义县| 安宁市| 察隅县| 天水市| 留坝县| 高要市| 阿城市| 通化市| 津南区| 江油市| 九台市| 博乐市| 磴口县| 舟山市| 天峨县| 聂荣县| 泽州县| 会理县| 长春市| 耒阳市| 新疆| 方正县| 沂水县| 太保市| 灌阳县| 平定县| 铜川市| 体育| 额敏县| 合水县| 奈曼旗| 巩义市| 台江县| 台中市| 长丰县| 阳江市| 个旧市| 延庆县|