找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Scientific Language Processing and Research Knowledge Graphs; First International Georg Rehm,Stefan Dietze,Frank Krüger Conference

[復(fù)制鏈接]
樓主: Weber-test
41#
發(fā)表于 2025-3-28 15:11:59 | 只看該作者
RTaC: A Generalized Framework for?Toolinging intricate tool sequencing with conditional and iterative logic. This research not only sets a new benchmark for tooling efficiency in LLMs but also opens new avenues for the application of LLMs in complex problem-solving scenarios, heralding a significant leap forward in the functionality and versatility of LLMs across diverse domains.
42#
發(fā)表于 2025-3-28 19:49:23 | 只看該作者
43#
發(fā)表于 2025-3-29 02:42:20 | 只看該作者
The Effect of?Knowledge Graph Schema on?Classifying Future Research Suggestionsves state of the art performance when combined with pretrained embeddings. Overall, we observe that schemas with limited variation in the resulting node degrees and significant interconnectedness lead to the best downstream classification performance.
44#
發(fā)表于 2025-3-29 03:51:44 | 只看該作者
45#
發(fā)表于 2025-3-29 09:05:13 | 只看該作者
46#
發(fā)表于 2025-3-29 14:39:03 | 只看該作者
47#
發(fā)表于 2025-3-29 19:25:29 | 只看該作者
48#
發(fā)表于 2025-3-29 23:03:08 | 只看該作者
OCR Cleaning of?Scientific Texts with?LLMs develop Large Language Models specially finetuned to correct OCR errors. We experimented with the mT5 model (both the mT5-small and mT5-large configurations), a Text-to-Text Transfer Transformer-based machine translation model, for the post-correction of texts with OCR errors. We compiled a paralle
49#
發(fā)表于 2025-3-30 01:33:47 | 只看該作者
RTaC: A Generalized Framework for?Toolinghe dynamic selection and sequencing of tools in response to complex queries. Addressing this, we introduce Reimagining Tooling as Coding (RTaC), a groundbreaking framework that transforms tool usage into a coding paradigm. Inspired by recent advancements [.], RTaC conceptualizes tools as Python func
50#
發(fā)表于 2025-3-30 06:01:48 | 只看該作者
Scientific Software Citation Intent Classification Using Large Language Modelshe introduction of new software systems. Despite its prevalence, there remains a significant gap in understanding how software is cited within the scientific literature. In this study, we offer a conceptual framework for studying software citation intent and explore the use of large language models,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂伦春自治旗| 玛多县| 阳高县| 四子王旗| 彭泽县| 黑龙江省| 赤水市| 甘肃省| 台中市| 洞口县| 桂平市| 南城县| 汉川市| 长白| 崇文区| 濉溪县| 乌兰察布市| 平谷区| 平利县| 拜城县| 靖边县| 陇川县| 华容县| 芜湖市| 青河县| 华宁县| 于都县| 绿春县| 都昌县| 梧州市| 密云县| 汾西县| 博罗县| 和平区| 武邑县| 乐业县| 衢州市| 万源市| 迁安市| 安泽县| 东方市|