找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Operations in Differential Geometry; Ivan Kolá?,Jan Slovák,Peter W. Michor Book 1993 Springer-Verlag Berlin Heidelberg 1993 Catego

[復(fù)制鏈接]
樓主: NERVE
41#
發(fā)表于 2025-3-28 15:59:43 | 只看該作者
42#
發(fā)表于 2025-3-28 21:39:26 | 只看該作者
43#
發(fā)表于 2025-3-28 22:59:04 | 只看該作者
http://image.papertrans.cn/n/image/661873.jpg
44#
發(fā)表于 2025-3-29 05:28:47 | 只看該作者
https://doi.org/10.1007/978-3-662-02950-3Category over Manifolds; Jet; Natural Bundle; Natural Operator; differential geometry; manifold; mathemati
45#
發(fā)表于 2025-3-29 10:31:08 | 只看該作者
ry. This is a field which every differential geometer has met several times, but which is not treated in detail in one place. Let us explain a little, what we mean by naturality. Exterior derivative commutes with the pullback of differential forms. In the background of this statement are the followi
46#
發(fā)表于 2025-3-29 11:45:47 | 只看該作者
Book 1993s a field which every differential geometer has met several times, but which is not treated in detail in one place. Let us explain a little, what we mean by naturality. Exterior derivative commutes with the pullback of differential forms. In the background of this statement are the following general
47#
發(fā)表于 2025-3-29 16:22:44 | 只看該作者
48#
發(fā)表于 2025-3-29 21:39:57 | 只看該作者
Book 1993rphism over f to each local diffeomorphism f between manifolds of the same dimension. This is a simple example of the concept of a natural bundle. The fact that exterior derivative d transforms sections of A kT* M into sections of A k+1T* M for every manifold M can be expressed by saying that d is an operator from A kT* M into A k+1T* M.
49#
發(fā)表于 2025-3-30 00:54:21 | 只看該作者
50#
發(fā)表于 2025-3-30 05:47:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 09:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太和县| 城步| 桦川县| 武乡县| 三江| 连平县| 南乐县| 广水市| 宁城县| 六安市| 三门县| 买车| 永新县| 大冶市| 班玛县| 磴口县| 上栗县| 崇明县| 连州市| 博罗县| 安乡县| 棋牌| 岳普湖县| 高雄县| 壤塘县| 灵山县| 西平县| 泾阳县| 德阳市| 绥滨县| 绥棱县| 民权县| 奈曼旗| 双流县| 亳州市| 茂名市| 都兰县| 汉中市| 美姑县| 综艺| 呼图壁县|