找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing and Information Systems; 10th International C Andrés Montoyo,Rafael Muńoz,Elisabeth Métais Conference proceedin

[復(fù)制鏈接]
樓主: Adentitious
51#
發(fā)表于 2025-3-30 09:28:52 | 只看該作者
Francis C. Y. Chik,Robert W. P. Luk,Korris F. L. Chungs.Presents acomprehensive and unique set of full-scale testsThis book presents the mainoutcomes of the first European research project on the seismic behavior ofadjustable steel storage pallet racking systems. In particular, it describes acomprehensive and unique set of full-scale tests designed to
52#
發(fā)表于 2025-3-30 13:57:45 | 只看該作者
53#
發(fā)表于 2025-3-30 16:37:07 | 只看該作者
On the Transformation of Sentences with Genitive Relations to SQL Queriesule based on a Hungarian question processor. One of the most crucial part of the system was the transformation of genitive relations to adequate SQL queries, since e.g.?questions begin with “Who” and “What” mostly contain such a relation. The genitive relation is one of the most complex semantic str
54#
發(fā)表于 2025-3-30 21:31:08 | 只看該作者
55#
發(fā)表于 2025-3-31 01:59:22 | 只看該作者
Application of Text Categorization to Astronomy Fieldn the astronomy field, astronomers often assign different names to table columns at their will even if they are about the same attributes of sky objects. As a result, it produces a big problem for data analysis over different tables. To solve this problem, the standard vocabulary called “unified con
56#
發(fā)表于 2025-3-31 06:06:18 | 只看該作者
57#
發(fā)表于 2025-3-31 11:17:23 | 只看該作者
58#
發(fā)表于 2025-3-31 17:07:26 | 只看該作者
Automatic Extraction of Semantic Relationships for WordNet by Means of Pattern Learning from Wikipedlopedia. Next, these patterns can be applied to extend existing ontologies or semantic networks with new relations. The experiments have been performed with the Simple English Wikipedia and WordNet 1.7. A new algorithm has been devised for automatically generalising the lexical patterns found in the
59#
發(fā)表于 2025-3-31 18:38:39 | 只看該作者
Combining Data-Driven Systems for Improving Named Entity Recognition An important preprocessing tool of these tasks consists of name entities recognition, which corresponds to a Name Entity Recognition (NER) task. In this paper we propose a completely automatic NER which involves identification of proper names in texts, and classification into a set of predefined ca
60#
發(fā)表于 2025-3-31 23:58:30 | 只看該作者
Natural Language Processing: Mature Enough for Requirements Documents Analysis?complete. Misunderstandings and errors of the requirements engineering phase propagate to later development phases and can potentially lead to a project failure..A promising way to overcome misunderstandings is to extract and validate terms used in requirements documents and relations between these
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华宁县| 建阳市| 多伦县| 南丹县| 错那县| 龙山县| 梧州市| 卓尼县| 华亭县| 观塘区| 桂林市| 饶河县| 松桃| 潢川县| 军事| 玛沁县| 罗山县| 广南县| 体育| 临朐县| 九龙县| 井冈山市| 华宁县| 共和县| 长丰县| 鹤山市| 阿拉善右旗| 泸溪县| 西畴县| 庐江县| 佛山市| 宝丰县| 松潘县| 萨嘎县| 谢通门县| 寿宁县| 新平| 凤城市| 黎城县| 缙云县| 新野县|