找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing and Chinese Computing; 7th CCF Internationa Min Zhang,Vincent Ng,Hongying Zan Conference proceedings 2018 Sprin

[復(fù)制鏈接]
樓主: Hallucination
31#
發(fā)表于 2025-3-27 00:37:21 | 只看該作者
32#
發(fā)表于 2025-3-27 04:00:10 | 只看該作者
33#
發(fā)表于 2025-3-27 08:19:16 | 只看該作者
34#
發(fā)表于 2025-3-27 10:18:06 | 只看該作者
From Plots to Endings: A Reinforced Pointer Generator for Story Ending Generatione a framework consisting of a Generator and a Reward Manager for this task. The Generator follows the pointer-generator network with coverage mechanism to deal with out-of-vocabulary (OOV) and repetitive words. Moreover, a mixed loss method is introduced to enable the Generator to produce story endi
35#
發(fā)表于 2025-3-27 17:12:39 | 只看該作者
A3Net:Adversarial-and-Attention Network for Machine Reading Comprehensionwo perspectives. First, adversarial training is applied to several target variables within the model, rather than only to the inputs or embeddings. We control the norm of adversarial perturbations according to the norm of original target variables, so that we can jointly add perturbations to several
36#
發(fā)表于 2025-3-27 21:21:02 | 只看該作者
37#
發(fā)表于 2025-3-27 22:17:58 | 只看該作者
38#
發(fā)表于 2025-3-28 03:37:06 | 只看該作者
Learning to Converse Emotionally Like Humans: A Conditional Variational Approachnt research hotspot. Although several emotional conversation approaches have been introduced, none of these methods were able to decide an appropriate emotion category for the response. We propose a new neural conversation model which is able to produce reasonable emotion interaction and generate em
39#
發(fā)表于 2025-3-28 06:49:17 | 只看該作者
Response Selection of Multi-turn Conversation with Deep Neural Networkss, the task is to choose the most reasonable response for the context. It can be regarded as a matching problem. To address this task, we propose a deep neural model named RCMN which focus on modeling relevance consistency of conversations. In addition, we adopt one existing deep learning model whic
40#
發(fā)表于 2025-3-28 10:54:40 | 只看該作者
Learning Dialogue History for Spoken Language Understandingesentations. SLU usually consists of two parts, namely intent identification and slot filling. Although many methods have been proposed for SLU, these methods generally process each utterance individually, which loses context information in dialogues. In this paper, we propose a hierarchical LSTM ba
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 17:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巢湖市| 彩票| 宁海县| 鄂尔多斯市| 临汾市| 永胜县| 银川市| 博罗县| 黄浦区| 元氏县| 卢氏县| 青海省| 垦利县| 惠水县| 舞钢市| 汽车| 定襄县| 沁源县| 三台县| 平安县| 平顶山市| 舒兰市| 天长市| 确山县| 绵阳市| 济源市| 遂平县| 涟源市| 临颍县| 顺昌县| 光泽县| 大庆市| 灵璧县| 高邮市| 石门县| 彭州市| 嘉黎县| 若尔盖县| 滨海县| 称多县| 碌曲县|