找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Information Retrieval; Tomek Strzalkowski Book 1999 Springer Science+Business Media Dordrecht 1999 DOM.Syntax.classificat

[復(fù)制鏈接]
樓主: analgesic
31#
發(fā)表于 2025-3-26 21:41:32 | 只看該作者
32#
發(fā)表于 2025-3-27 02:15:27 | 只看該作者
Combining Corpus Linguistics and Human Memory Models for Automatic Term Association,rms. A human memory model is modified in such a way that it produces additional search terms instead of human associations. A small experiment shows that such a spreading activation network can find alternative terms — with a performance similar to the normally used similarity measures.
33#
發(fā)表于 2025-3-27 08:50:42 | 只看該作者
34#
發(fā)表于 2025-3-27 10:21:43 | 只看該作者
Document Classification and Routing,bilities are determined from the relevant training documents. Development, refinement, and testing of the system’s ability to route 120,000 documents into 50 topics are discussed as well as the mathematical model on which it is based.
35#
發(fā)表于 2025-3-27 17:28:10 | 只看該作者
Murax: Finding and Organizing Answers from Text Search, different tack, directed to high-precision retrieval and an explicit organization of answer text which may be assembled from several different documents. For this, shallow linguistic analysis is deployed in a manner such that the robustness afforded by traditional retrieval techniques is maintained.
36#
發(fā)表于 2025-3-27 18:21:05 | 只看該作者
The Use of Categories and Clusters for Organizing Retrieval Results,t categorization and text clustering are two natural language processing tasks whose results can be applied to document organization. This chapter describes user interfaces that use categories and clusters to organize retrieval results, and examines the relationship between the two..
37#
發(fā)表于 2025-3-28 01:09:52 | 只看該作者
38#
發(fā)表于 2025-3-28 03:18:41 | 只看該作者
Natural Language Information Retrieval978-94-017-2388-6Series ISSN 1386-291X Series E-ISSN 2542-9388
39#
發(fā)表于 2025-3-28 08:30:28 | 只看該作者
40#
發(fā)表于 2025-3-28 12:42:07 | 只看該作者
Extraction-Based Text Categorization: Generating Domain-Specific Role Relationships Automatically, be generated automatically using only preclassified texts as input. Second, we present the . algorithm that uses lexical items to represent domain-specific role relationships instead of semantic features. Using these techniques, we can automatically build text categorization systems that benefit from domain-specific natural language processing.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 08:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陆良县| 洪江市| 扶沟县| 鄱阳县| 定安县| 怀远县| 阿拉善右旗| 天津市| 虎林市| 连山| 乌兰察布市| 东源县| 介休市| 米脂县| 厦门市| 临洮县| 利川市| 同仁县| 邳州市| 元谋县| 深水埗区| 会同县| 会泽县| 和政县| 南昌市| 寻甸| 雷波县| 皋兰县| 定州市| 嘉兴市| 郓城县| 石首市| 清水县| 沽源县| 新宁县| 十堰市| 磐石市| 宜城市| 锡林郭勒盟| 繁昌县| 唐海县|