找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Nachbarschaft und Kriminalit?tsfurcht; Eine empirische Unte Jan Starcke Book 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer

[復(fù)制鏈接]
樓主: breath-focus
41#
發(fā)表于 2025-3-28 18:26:50 | 只看該作者
42#
發(fā)表于 2025-3-28 21:02:13 | 只看該作者
Jan Starckeders and friends have persuaded us to write this third edition. During these years, Riemannian Geometry has undergone many dramatic developments. Here is not the place to relate them. The reader can consult for instance the recent book [Br5]. of our “mentor” Marcel Berger. However, Riemannian Geomet
43#
發(fā)表于 2025-3-29 00:54:29 | 只看該作者
44#
發(fā)表于 2025-3-29 03:51:04 | 只看該作者
Jan Starcke a sequence of Riemannian manifolds, or more generally metric spaces, to converge to a space. In the first section we develop the weakest convergence concept: Gromov-Hausdorff convergence. We then go on to explain some of the elliptic regularity theory we need for some of the later developments. We
45#
發(fā)表于 2025-3-29 09:15:38 | 只看該作者
Jan Starckencluding basic theory of tensors, forms, and Lie groups. At times we shall also assume familiarity with algebraic topology and de Rham cohomology. Specifically, we recommend that the reader is familiar with texts like [14] or[76, vol. 1]. For the readers who have only learned something like the firs
46#
發(fā)表于 2025-3-29 12:15:20 | 只看該作者
Jan Starckeon already introduced and explained the ideas of the parabolic methods that had found a spectacular success in the work of Perelman at the examples of closed geodesics and harmonic forms. It also discussed further examples of geometric variational problems from quantum field theory, another source o
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹤壁市| 盐边县| 石台县| 喀喇| 滕州市| 古蔺县| 阳东县| 惠来县| 濉溪县| 霍林郭勒市| 定州市| 洛扎县| 湘乡市| 疏附县| 庄浪县| 济宁市| 东至县| 无棣县| 巧家县| 安国市| 吕梁市| 德江县| 偏关县| 修水县| 乐至县| 万年县| 瑞丽市| 嘉荫县| 老河口市| 崇明县| 靖州| 建宁县| 达日县| 建平县| 义马市| 盐津县| 县级市| 裕民县| 肇州县| 武夷山市| 沧源|