找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Analysis and Numerical Methods for Science and Technology; Volume 5 Evolution P Robert Dautray,Jacques-Louis Lions BookLatest

[復(fù)制鏈接]
查看: 41465|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:35:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Mathematical Analysis and Numerical Methods for Science and Technology
副標(biāo)題Volume 5 Evolution P
編輯Robert Dautray,Jacques-Louis Lions
視頻videohttp://file.papertrans.cn/643/642257/642257.mp4
圖書封面Titlebook: Mathematical Analysis and Numerical Methods for Science and Technology; Volume 5 Evolution P Robert Dautray,Jacques-Louis Lions BookLatest
描述299 G(t), and to obtain the corresponding properties of its Laplace transform (called the resolvent of - A) R(p) = (A + pl)-l , whose existence is linked with the spectrum of A. The functional space framework used will be, for simplicity, a Banach space(3). To summarise, we wish to extend definition (2) for bounded operators A, i.e. G(t) = exp( - tA) , to unbounded operators A over X, where X is now a Banach space. Plan of the Chapter We shall see in this chapter that this enterprise is possible, that it gives us in addition to what is demanded above, some supplementary information in a number of areas: - a new ‘explicit‘ expression of the solution; - the regularity of the solution taking into account some conditions on the given data (u , u1,f etc ... ) with the notion of a strong solution; o - asymptotic properties of the solutions. In order to treat these problems we go through the following stages: in § 1, we shall study the principal properties of operators of semigroups {G(t)} acting in the space X, particularly the existence of an upper exponential bound (in t) of the norm of G(t). In §2, we shall study the functions u E X for which t --+ G(t)u is differentiable.
出版日期BookLatest edition
關(guān)鍵詞Banach Space; Hilbert space; calculus; differential equation; functional analysis; mathematical analysis;
版次1
doihttps://doi.org/10.1007/978-3-642-58090-1
copyrightSpringer-Verlag Berlin Heidelberg 2000
The information of publication is updating

書目名稱Mathematical Analysis and Numerical Methods for Science and Technology影響因子(影響力)




書目名稱Mathematical Analysis and Numerical Methods for Science and Technology影響因子(影響力)學(xué)科排名




書目名稱Mathematical Analysis and Numerical Methods for Science and Technology網(wǎng)絡(luò)公開度




書目名稱Mathematical Analysis and Numerical Methods for Science and Technology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Mathematical Analysis and Numerical Methods for Science and Technology被引頻次




書目名稱Mathematical Analysis and Numerical Methods for Science and Technology被引頻次學(xué)科排名




書目名稱Mathematical Analysis and Numerical Methods for Science and Technology年度引用




書目名稱Mathematical Analysis and Numerical Methods for Science and Technology年度引用學(xué)科排名




書目名稱Mathematical Analysis and Numerical Methods for Science and Technology讀者反饋




書目名稱Mathematical Analysis and Numerical Methods for Science and Technology讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:57:25 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:20:07 | 只看該作者
地板
發(fā)表于 2025-3-22 08:26:55 | 只看該作者
5#
發(fā)表于 2025-3-22 12:32:16 | 只看該作者
6#
發(fā)表于 2025-3-22 15:51:57 | 只看該作者
http://image.papertrans.cn/n/image/642257.jpg
7#
發(fā)表于 2025-3-22 20:30:03 | 只看該作者
https://doi.org/10.1007/978-3-642-58090-1Banach Space; Hilbert space; calculus; differential equation; functional analysis; mathematical analysis;
8#
發(fā)表于 2025-3-22 22:35:20 | 只看該作者
9#
發(fā)表于 2025-3-23 02:28:25 | 只看該作者
10#
發(fā)表于 2025-3-23 06:26:51 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 03:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹿泉市| 枣庄市| 高唐县| 南岸区| 枣庄市| 平罗县| 哈巴河县| 黔东| 湘乡市| 永州市| 荣成市| 海盐县| 崇信县| 平和县| 黄大仙区| 南靖县| 略阳县| 昌邑市| 蓝山县| 靖远县| 淅川县| 永善县| 山丹县| 宣化县| 夹江县| 郧西县| 安化县| 灌南县| 丹巴县| 彩票| 长泰县| 洞口县| 普兰县| 赞皇县| 宁阳县| 册亨县| 定边县| 安化县| 炎陵县| 郸城县| 丰顺县|