找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Multivariate Wavelet Frames; Maria Skopina,Aleksandr Krivoshein,Vladimir Protas Book 2016 Springer Nature Singapore Pte Ltd. 2016 Frames.W

[復制鏈接]
查看: 22326|回復: 35
樓主
發(fā)表于 2025-3-21 16:15:32 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Multivariate Wavelet Frames
編輯Maria Skopina,Aleksandr Krivoshein,Vladimir Protas
視頻videohttp://file.papertrans.cn/642/641346/641346.mp4
概述Discusses algorithmic methods for wavelet construction.Presents detailed theoretical justifications of the methods discussed.Supplies an extensive collection of examples
叢書名稱Industrial and Applied Mathematics
圖書封面Titlebook: Multivariate Wavelet Frames;  Maria Skopina,Aleksandr Krivoshein,Vladimir Protas Book 2016 Springer Nature Singapore Pte Ltd. 2016 Frames.W
描述.This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult..Anotherimportant feature of wavelet is symmetry. Different kinds of wavelet symmetry are required in various applications, since they preserve linear phase properties and also allow symmetric boundary conditions in
出版日期Book 2016
關鍵詞Frames; Wavelet Frames; Wavelet Bases; Matrix Dilation; Orthogonal and Bi-orthogonal Bases; Graphic Signa
版次1
doihttps://doi.org/10.1007/978-981-10-3205-9
isbn_softcover978-981-10-9817-8
isbn_ebook978-981-10-3205-9Series ISSN 2364-6837 Series E-ISSN 2364-6845
issn_series 2364-6837
copyrightSpringer Nature Singapore Pte Ltd. 2016
The information of publication is updating

書目名稱Multivariate Wavelet Frames影響因子(影響力)




書目名稱Multivariate Wavelet Frames影響因子(影響力)學科排名




書目名稱Multivariate Wavelet Frames網絡公開度




書目名稱Multivariate Wavelet Frames網絡公開度學科排名




書目名稱Multivariate Wavelet Frames被引頻次




書目名稱Multivariate Wavelet Frames被引頻次學科排名




書目名稱Multivariate Wavelet Frames年度引用




書目名稱Multivariate Wavelet Frames年度引用學科排名




書目名稱Multivariate Wavelet Frames讀者反饋




書目名稱Multivariate Wavelet Frames讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:26:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:56:37 | 只看該作者
Industrial and Applied Mathematicshttp://image.papertrans.cn/n/image/641346.jpg
地板
發(fā)表于 2025-3-22 04:42:13 | 只看該作者
https://doi.org/10.1007/978-981-10-3205-9Frames; Wavelet Frames; Wavelet Bases; Matrix Dilation; Orthogonal and Bi-orthogonal Bases; Graphic Signa
5#
發(fā)表于 2025-3-22 09:39:54 | 只看該作者
Maria Skopina,Aleksandr Krivoshein,Vladimir ProtasDiscusses algorithmic methods for wavelet construction.Presents detailed theoretical justifications of the methods discussed.Supplies an extensive collection of examples
6#
發(fā)表于 2025-3-22 14:38:44 | 只看該作者
7#
發(fā)表于 2025-3-22 19:57:03 | 只看該作者
Book 2016ll known, its practical implementation in the multidimensional setting is difficult..Anotherimportant feature of wavelet is symmetry. Different kinds of wavelet symmetry are required in various applications, since they preserve linear phase properties and also allow symmetric boundary conditions in
8#
發(fā)表于 2025-3-22 22:58:35 | 只看該作者
9#
發(fā)表于 2025-3-23 01:40:13 | 只看該作者
10#
發(fā)表于 2025-3-23 08:09:58 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-27 01:23
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
师宗县| 长白| 姚安县| 简阳市| 阳城县| 安阳市| 邵阳县| 平度市| 湘西| 颍上县| 监利县| 肇州县| 武定县| 兰溪市| 合川市| 磴口县| 信阳市| 富平县| 五寨县| 泾阳县| 五河县| 丰县| 敦煌市| 津南区| 峡江县| 手机| 兰考县| 山西省| 平潭县| 金堂县| 大埔区| 佛学| 旌德县| 睢宁县| 湖南省| 博野县| 莲花县| 宣恩县| 维西| 临潭县| 金昌市|