找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Multivariate Data Analysis on Matrix Manifolds; (with Manopt) Nickolay Trendafilov,Michele Gallo Textbook 2021 The Editor(s) (if applicable

[復(fù)制鏈接]
查看: 31988|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:55:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Multivariate Data Analysis on Matrix Manifolds
副標(biāo)題(with Manopt)
編輯Nickolay Trendafilov,Michele Gallo
視頻videohttp://file.papertrans.cn/642/641297/641297.mp4
概述Integrates multivariate data analysis with Riemannian geometry.Provides a unified treatment of several MDA techniques.Incorporates new tools and technology into current theory of MDA.Includes Manpot c
叢書(shū)名稱(chēng)Springer Series in the Data Sciences
圖書(shū)封面Titlebook: Multivariate Data Analysis on Matrix Manifolds; (with Manopt) Nickolay Trendafilov,Michele Gallo Textbook 2021 The Editor(s) (if applicable
描述This graduate-level textbook aims to give a unified presentation and solution of several commonly used techniques for multivariate data analysis (MDA). Unlike similar texts, it treats the MDA problems as optimization problems on matrix manifolds defined by the MDA model parameters, allowing them to be solved using (free) optimization software Manopt. The book includes numerous in-text examples as well as Manopt codes and software guides, which can be applied directly or used as templates for solving similar and new problems. The first two chapters provide an overview and essential background for studying MDA, giving basic information and notations. Next, it considers several sets of matrices routinely used in MDA as parameter spaces, along with their basic topological properties. A brief introduction to matrix (Riemannian) manifolds and optimization methods on them with Manopt complete the MDA prerequisite. The remaining chapters study individual MDA techniques in depth. The number ofexercises complement the main text with additional information and occasionally involve open and/or challenging research questions. Suitable fields include computational statistics, data analysis, data
出版日期Textbook 2021
關(guān)鍵詞Multivariate Data Analysis; Matrix Manifolds; Data Science; Principal Component Analysis; Data matrix fa
版次1
doihttps://doi.org/10.1007/978-3-030-76974-1
isbn_softcover978-3-030-76976-5
isbn_ebook978-3-030-76974-1Series ISSN 2365-5674 Series E-ISSN 2365-5682
issn_series 2365-5674
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Multivariate Data Analysis on Matrix Manifolds影響因子(影響力)




書(shū)目名稱(chēng)Multivariate Data Analysis on Matrix Manifolds影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Multivariate Data Analysis on Matrix Manifolds網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Multivariate Data Analysis on Matrix Manifolds網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Multivariate Data Analysis on Matrix Manifolds被引頻次




書(shū)目名稱(chēng)Multivariate Data Analysis on Matrix Manifolds被引頻次學(xué)科排名




書(shū)目名稱(chēng)Multivariate Data Analysis on Matrix Manifolds年度引用




書(shū)目名稱(chēng)Multivariate Data Analysis on Matrix Manifolds年度引用學(xué)科排名




書(shū)目名稱(chēng)Multivariate Data Analysis on Matrix Manifolds讀者反饋




書(shū)目名稱(chēng)Multivariate Data Analysis on Matrix Manifolds讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:26:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:33:32 | 只看該作者
地板
發(fā)表于 2025-3-22 06:06:57 | 只看該作者
5#
發(fā)表于 2025-3-22 12:22:11 | 只看該作者
6#
發(fā)表于 2025-3-22 13:22:17 | 只看該作者
2365-5674 and technology into current theory of MDA.Includes Manpot cThis graduate-level textbook aims to give a unified presentation and solution of several commonly used techniques for multivariate data analysis (MDA). Unlike similar texts, it treats the MDA problems as optimization problems on matrix mani
7#
發(fā)表于 2025-3-22 17:28:50 | 只看該作者
8#
發(fā)表于 2025-3-22 21:17:50 | 只看該作者
9#
發(fā)表于 2025-3-23 01:27:48 | 只看該作者
2365-5674 number ofexercises complement the main text with additional information and occasionally involve open and/or challenging research questions. Suitable fields include computational statistics, data analysis, data978-3-030-76976-5978-3-030-76974-1Series ISSN 2365-5674 Series E-ISSN 2365-5682
10#
發(fā)表于 2025-3-23 08:55:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 02:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石阡县| 富阳市| 舟山市| 博湖县| 抚宁县| 沂水县| 名山县| 宁德市| 临潭县| 淅川县| 衡南县| 双鸭山市| 满城县| 辽源市| 台江县| 孙吴县| 共和县| 大石桥市| 禹城市| 德江县| 成都市| 西乌| 阳信县| 罗定市| 吴旗县| 永平县| 横山县| 开化县| 绥德县| 南皮县| 南宫市| 宝丰县| 兴山县| 穆棱市| 六枝特区| 黔西县| 抚远县| 揭阳市| 准格尔旗| 临沧市| 浙江省|