找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Multiple Wiener-It? Integrals; With Applications to Péter Major Book 2014Latest edition Springer International Publishing Switzerland 2014

[復(fù)制鏈接]
查看: 48551|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:41:43 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Multiple Wiener-It? Integrals
副標題With Applications to
編輯Péter Major
視頻videohttp://file.papertrans.cn/642/641057/641057.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Multiple Wiener-It? Integrals; With Applications to Péter Major Book 2014Latest edition Springer International Publishing Switzerland 2014
描述.The goal of this Lecture Note is to prove a new type of limit theorems for normalized sums of strongly dependent random variables that play an important role in probability theory or in statistical physics. Here non-linear functionals of stationary Gaussian fields are considered, and it is shown that the theory of Wiener–It? integrals provides a valuable tool in their study. More precisely, a version of these random integrals is introduced that enables us to combine the technique of random integrals and Fourier analysis. The most important results of this theory are presented together with some non-trivial limit theorems proved with their help..This work is a new, revised version of a previous volume written with the goal of giving a better explanation of some of the details and the motivation behind the proofs. It does not contain essentially new results; it was written to give a better insight to the old ones. In particular, a more detailed explanation of generalized fields is included to show that what is at the first sight a rather formal object is actually a useful tool for carrying?out heuristic arguments..
出版日期Book 2014Latest edition
關(guān)鍵詞60G18,60H05,60F99,60G10,60G15,60G60; Wiener chaos; Wiener–It? integrals; diagram formula; large-scale li
版次2
doihttps://doi.org/10.1007/978-3-319-02642-8
isbn_softcover978-3-319-02641-1
isbn_ebook978-3-319-02642-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

書目名稱Multiple Wiener-It? Integrals影響因子(影響力)




書目名稱Multiple Wiener-It? Integrals影響因子(影響力)學(xué)科排名




書目名稱Multiple Wiener-It? Integrals網(wǎng)絡(luò)公開度




書目名稱Multiple Wiener-It? Integrals網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Multiple Wiener-It? Integrals被引頻次




書目名稱Multiple Wiener-It? Integrals被引頻次學(xué)科排名




書目名稱Multiple Wiener-It? Integrals年度引用




書目名稱Multiple Wiener-It? Integrals年度引用學(xué)科排名




書目名稱Multiple Wiener-It? Integrals讀者反饋




書目名稱Multiple Wiener-It? Integrals讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:40:17 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:53:09 | 只看該作者
地板
發(fā)表于 2025-3-22 07:56:08 | 只看該作者
5#
發(fā)表于 2025-3-22 09:33:57 | 只看該作者
Péter MajorIncludes supplementary material:
6#
發(fā)表于 2025-3-22 15:02:38 | 只看該作者
7#
發(fā)表于 2025-3-22 17:40:18 | 只看該作者
8#
發(fā)表于 2025-3-23 01:07:01 | 只看該作者
Book 2014Latest editionant role in probability theory or in statistical physics. Here non-linear functionals of stationary Gaussian fields are considered, and it is shown that the theory of Wiener–It? integrals provides a valuable tool in their study. More precisely, a version of these random integrals is introduced that
9#
發(fā)表于 2025-3-23 01:48:27 | 只看該作者
0075-8434 endent random variables that play an important role in probability theory or in statistical physics. Here non-linear functionals of stationary Gaussian fields are considered, and it is shown that the theory of Wiener–It? integrals provides a valuable tool in their study. More precisely, a version of
10#
發(fā)表于 2025-3-23 08:32:38 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
思茅市| 固始县| 西乌| 汾阳市| 临泽县| 安福县| 台中县| 宜兴市| 汝阳县| 正镶白旗| 张家港市| 襄城县| 岳西县| 文化| 中江县| 婺源县| 长丰县| 双鸭山市| 珲春市| 罗田县| 巴东县| 阜新| 大埔区| 团风县| 华阴市| 卢氏县| 张北县| 东山县| 资中县| 河西区| 沙洋县| 甘谷县| 石嘴山市| 沙洋县| 苍梧县| 临江市| 宁乡县| 晴隆县| 新竹市| 浦江县| 辰溪县|