找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Multiple Scale and Singular Perturbation Methods; J. Kevorkian,J. D. Cole Book 1996 Springer-Verlag New York, Inc. 1996 Layer.differential

[復(fù)制鏈接]
查看: 21574|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:07:19 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Multiple Scale and Singular Perturbation Methods
編輯J. Kevorkian,J. D. Cole
視頻videohttp://file.papertrans.cn/642/641022/641022.mp4
叢書名稱Applied Mathematical Sciences
圖書封面Titlebook: Multiple Scale and Singular Perturbation Methods;  J. Kevorkian,J. D. Cole Book 1996 Springer-Verlag New York, Inc. 1996 Layer.differential
描述This book is a revised and updated version, including a substantial portion of new material, of our text Perturbation Methods in Applied Mathematics (Springer- Verlag, 1981). We present the material at a level that assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate-level course on the subject. Perturbation methods, first used by astronomers to predict the effects of small disturbances on the nominal motions of celestial bodies, have now become widely used analytical tools in virtually all branches of science. A problem lends itself to perturbation analysis if it is "close" to a simpler problem that can be solved exactly. Typically, this closeness is measured by the occurrence of a small dimensionless parameter, E, in the governing system (consisting of differential equations and boundary conditions) so that for E = 0 the resulting system is exactly solvable. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of E. In a regular per
出版日期Book 1996
關(guān)鍵詞Layer; differential equation; mathematics; model; partial differential equation; transformation
版次1
doihttps://doi.org/10.1007/978-1-4612-3968-0
isbn_softcover978-1-4612-8452-9
isbn_ebook978-1-4612-3968-0Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer-Verlag New York, Inc. 1996
The information of publication is updating

書目名稱Multiple Scale and Singular Perturbation Methods影響因子(影響力)




書目名稱Multiple Scale and Singular Perturbation Methods影響因子(影響力)學(xué)科排名




書目名稱Multiple Scale and Singular Perturbation Methods網(wǎng)絡(luò)公開度




書目名稱Multiple Scale and Singular Perturbation Methods網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Multiple Scale and Singular Perturbation Methods被引頻次




書目名稱Multiple Scale and Singular Perturbation Methods被引頻次學(xué)科排名




書目名稱Multiple Scale and Singular Perturbation Methods年度引用




書目名稱Multiple Scale and Singular Perturbation Methods年度引用學(xué)科排名




書目名稱Multiple Scale and Singular Perturbation Methods讀者反饋




書目名稱Multiple Scale and Singular Perturbation Methods讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:36:37 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:24:02 | 只看該作者
Book 1996Springer- Verlag, 1981). We present the material at a level that assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a gr
地板
發(fā)表于 2025-3-22 05:08:09 | 只看該作者
5#
發(fā)表于 2025-3-22 09:21:23 | 只看該作者
6#
發(fā)表于 2025-3-22 13:58:00 | 只看該作者
Multiple Scale and Singular Perturbation Methods978-1-4612-3968-0Series ISSN 0066-5452 Series E-ISSN 2196-968X
7#
發(fā)表于 2025-3-22 17:22:51 | 只看該作者
Applied Mathematical Scienceshttp://image.papertrans.cn/n/image/641022.jpg
8#
發(fā)表于 2025-3-22 22:23:51 | 只看該作者
9#
發(fā)表于 2025-3-23 04:03:13 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:39:27 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 03:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新源县| 巧家县| 丹阳市| 浮梁县| 即墨市| 庄河市| 新野县| 张家界市| 工布江达县| 招远市| 南岸区| 临安市| 应用必备| 宣武区| 射洪县| 长岭县| 安塞县| 金坛市| 出国| 博爱县| 巴楚县| 巴东县| 旬邑县| 古田县| 南宫市| 秭归县| 达州市| 库车县| 长丰县| 吉隆县| 合作市| 宁波市| 北辰区| 鄂尔多斯市| 乐陵市| 沙洋县| 铜梁县| 类乌齐县| 甘泉县| 惠来县| 汉川市|