找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Moving Objects Detection Using Machine Learning; Navneet Ghedia,Chandresh Vithalani,Rohit M. Thanki Book 2022 The Author(s), under exclusi

[復(fù)制鏈接]
查看: 36815|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:45:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Moving Objects Detection Using Machine Learning
編輯Navneet Ghedia,Chandresh Vithalani,Rohit M. Thanki
視頻videohttp://file.papertrans.cn/640/639776/639776.mp4
概述Provides basic information on object detection and tracking in a digital video stream using various background separation and learning based approaches.Presents information about various systems, whic
叢書名稱SpringerBriefs in Electrical and Computer Engineering
圖書封面Titlebook: Moving Objects Detection Using Machine Learning;  Navneet Ghedia,Chandresh Vithalani,Rohit M. Thanki Book 2022 The Author(s), under exclusi
描述This book shows how machine learning can detect moving objects in a digital video stream. The authors present different background subtraction approaches, foreground segmentation, and object tracking approaches to accomplish this. They also propose an algorithm that considers a multimodal background subtraction approach that can handle a dynamic background and different constraints. The authors show how the proposed algorithm is able to detect and track 2D & 3D objects in monocular sequences for both indoor and outdoor surveillance environments and at the same time, also able to work satisfactorily in a dynamic background and with challenging constraints. In addition, the shows how the proposed algorithm makes use of parameter optimization and adaptive threshold techniques as intrinsic improvements of the Gaussian Mixture Model. The presented system in the book is also able to handle partial occlusion during object detection and tracking. All the presented work and evaluations were carried out in offline processing with the computation done by a single laptop computer with MATLAB serving as software environment..
出版日期Book 2022
關(guān)鍵詞object detection and tracking; unsupervised learning algorithm; Kalman filter; separation algorithms; Va
版次1
doihttps://doi.org/10.1007/978-3-030-90910-9
isbn_softcover978-3-030-90909-3
isbn_ebook978-3-030-90910-9Series ISSN 2191-8112 Series E-ISSN 2191-8120
issn_series 2191-8112
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2022
The information of publication is updating

書目名稱Moving Objects Detection Using Machine Learning影響因子(影響力)




書目名稱Moving Objects Detection Using Machine Learning影響因子(影響力)學(xué)科排名




書目名稱Moving Objects Detection Using Machine Learning網(wǎng)絡(luò)公開度




書目名稱Moving Objects Detection Using Machine Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Moving Objects Detection Using Machine Learning被引頻次




書目名稱Moving Objects Detection Using Machine Learning被引頻次學(xué)科排名




書目名稱Moving Objects Detection Using Machine Learning年度引用




書目名稱Moving Objects Detection Using Machine Learning年度引用學(xué)科排名




書目名稱Moving Objects Detection Using Machine Learning讀者反饋




書目名稱Moving Objects Detection Using Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:44:25 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:46:33 | 只看該作者
Book 2022tial occlusion during object detection and tracking. All the presented work and evaluations were carried out in offline processing with the computation done by a single laptop computer with MATLAB serving as software environment..
地板
發(fā)表于 2025-3-22 04:35:48 | 只看該作者
5#
發(fā)表于 2025-3-22 09:12:45 | 只看該作者
6#
發(fā)表于 2025-3-22 13:02:18 | 只看該作者
https://doi.org/10.1007/978-3-030-90910-9object detection and tracking; unsupervised learning algorithm; Kalman filter; separation algorithms; Va
7#
發(fā)表于 2025-3-22 19:32:45 | 只看該作者
8#
發(fā)表于 2025-3-22 23:29:32 | 只看該作者
Moving Objects Detection Using Machine Learning978-3-030-90910-9Series ISSN 2191-8112 Series E-ISSN 2191-8120
9#
發(fā)表于 2025-3-23 01:37:17 | 只看該作者
Navneet Ghedia,Chandresh Vithalani,Rohit M. ThankiProvides basic information on object detection and tracking in a digital video stream using various background separation and learning based approaches.Presents information about various systems, whic
10#
發(fā)表于 2025-3-23 09:36:22 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 16:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
井研县| 铜山县| 扶绥县| 樟树市| 蕲春县| 松潘县| 沁阳市| 襄城县| 阿荣旗| 平罗县| 曲麻莱县| 建水县| 东阳市| 商城县| 定州市| 西峡县| 神木县| 阿城市| 乌苏市| 来安县| 多伦县| 微山县| 福清市| 巴塘县| 砀山县| 宕昌县| 海门市| 紫金县| 甘德县| 图片| 高淳县| 扶沟县| 赤水市| 资讯 | 团风县| 四川省| 改则县| 成安县| 平顺县| 合肥市| 建瓯市|