找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Moufang Polygons; Jacques Tits,Richard M. Weiss Book 2002 Springer-Verlag Berlin Heidelberg 2002 Buildings.Graph.algebra.classification.co

[復(fù)制鏈接]
查看: 55319|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:56:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Moufang Polygons
編輯Jacques Tits,Richard M. Weiss
視頻videohttp://file.papertrans.cn/640/639684/639684.mp4
概述Gives a complete classification of Moufang polygons, starting from first principles.Includes a totally new classification of the spherical buildings of rank 3 at least.J. Tits is one of the best and m
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: Moufang Polygons;  Jacques Tits,Richard M. Weiss Book 2002 Springer-Verlag Berlin Heidelberg 2002 Buildings.Graph.algebra.classification.co
描述Spherical buildings are certain combinatorial simplicial complexes intro- duced, at first in the language of "incidence geometries," to provide a sys- tematic geometric interpretation of the exceptional complex Lie groups. (The definition of a building in terms of chamber systems and definitions of the various related notions used in this introduction such as "thick," "residue," "rank," "spherical," etc. are given in Chapter 39. ) Via the notion of a BN-pair, the theory turned out to apply to simple algebraic groups over an arbitrary field. More precisely, to any absolutely simple algebraic group of positive rela- tive rank £ is associated a thick irreducible spherical building of the same rank (these are the algebraic spherical buildings) and the main result of Buildings of Spherical Type and Finite BN-Pairs [101] is that the converse, for £ ::::: 3, is almost true: (1. 1) Theorem. Every thick irreducible spherical building of rank at least three is classical, algebraic‘ or mixed. Classical buildings are those defined in terms of the geometry of a classical group (e. g. unitary, orthogonal, etc. of finite Witt index or linear of finite dimension) over an arbitrary field or skew-fi
出版日期Book 2002
關(guān)鍵詞Buildings; Graph; algebra; classification; combinatorics; generalized polygons; graph theory; incidence geo
版次1
doihttps://doi.org/10.1007/978-3-662-04689-0
isbn_softcover978-3-642-07833-0
isbn_ebook978-3-662-04689-0Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag Berlin Heidelberg 2002
The information of publication is updating

書目名稱Moufang Polygons影響因子(影響力)




書目名稱Moufang Polygons影響因子(影響力)學(xué)科排名




書目名稱Moufang Polygons網(wǎng)絡(luò)公開度




書目名稱Moufang Polygons網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Moufang Polygons被引頻次




書目名稱Moufang Polygons被引頻次學(xué)科排名




書目名稱Moufang Polygons年度引用




書目名稱Moufang Polygons年度引用學(xué)科排名




書目名稱Moufang Polygons讀者反饋




書目名稱Moufang Polygons讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:36:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:02:55 | 只看該作者
地板
發(fā)表于 2025-3-22 04:35:09 | 只看該作者
1439-7382 mixed. Classical buildings are those defined in terms of the geometry of a classical group (e. g. unitary, orthogonal, etc. of finite Witt index or linear of finite dimension) over an arbitrary field or skew-fi978-3-642-07833-0978-3-662-04689-0Series ISSN 1439-7382 Series E-ISSN 2196-9922
5#
發(fā)表于 2025-3-22 12:25:25 | 只看該作者
978-3-642-07833-0Springer-Verlag Berlin Heidelberg 2002
6#
發(fā)表于 2025-3-22 14:31:02 | 只看該作者
7#
發(fā)表于 2025-3-22 18:51:10 | 只看該作者
8#
發(fā)表于 2025-3-23 01:07:49 | 只看該作者
9#
發(fā)表于 2025-3-23 02:24:32 | 只看該作者
10#
發(fā)表于 2025-3-23 08:59:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 19:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长垣县| 繁昌县| 固镇县| 紫金县| 同仁县| 新乐市| 门头沟区| 汝阳县| 安顺市| 锡林郭勒盟| 汝阳县| 青田县| 和静县| 安化县| 定远县| 汾西县| 双桥区| 凤台县| 礼泉县| 德庆县| 石首市| 德令哈市| 江北区| 沅陵县| 盐津县| 大埔区| 皮山县| 寿宁县| 台南市| 鹿邑县| 萨迦县| 太湖县| 永寿县| 铜山县| 玉溪市| 正蓝旗| 贵港市| 兖州市| 同心县| 洛宁县| 仁怀市|