找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mordell–Weil Lattices; Matthias Schütt,Tetsuji Shioda Book 2019 Springer Nature Singapore Pte Ltd. 2019 Mordell--Weil lattice.lattices and

[復(fù)制鏈接]
查看: 25742|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:16:29 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Mordell–Weil Lattices
編輯Matthias Schütt,Tetsuji Shioda
視頻videohttp://file.papertrans.cn/640/639292/639292.mp4
概述Is the first comprehensive introduction of Mordell–Weil lattices that does not assume extensive prerequisites.Shows that the theory of Mordell–Weil lattices itself is very powerful yet relatively easy
叢書名稱Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathemati
圖書封面Titlebook: Mordell–Weil Lattices;  Matthias Schütt,Tetsuji Shioda Book 2019 Springer Nature Singapore Pte Ltd. 2019 Mordell--Weil lattice.lattices and
描述.This book lays out the theory of Mordell–Weil lattices, a very powerful and influential tool at the crossroads of algebraic geometry and number theory, which offers many fruitful connections to other areas of mathematics..The book presents all the ingredients entering into the theory of Mordell–Weil lattices in detail, notably, relevant portions of lattice theory, elliptic curves, and algebraic surfaces. After defining Mordell–Weil lattices, the authors provide several applications in depth. They start with the classification of rational elliptic surfaces. Then a useful connection with Galois representations is discussed. By developing the notion of excellent families, the authors are able to design many Galois representations with given Galois groups such as the Weyl groups of .E.6., .E.7. and .E.8.. They also explain a connection to the classical topic of the 27 lines on a cubic surface..Two chapters deal withelliptic K3 surfaces, a pulsating area of recent research activity which highlights many central properties of Mordell–Weil lattices. Finally, the book turns to the rank problem—one of the key motivations for the introduction of Mordell–Weil lattices. The authors present th
出版日期Book 2019
關(guān)鍵詞Mordell--Weil lattice; lattices and sphere packings; elliptic curves and surfaces; K3 surface; Galois re
版次1
doihttps://doi.org/10.1007/978-981-32-9301-4
isbn_softcover978-981-32-9303-8
isbn_ebook978-981-32-9301-4Series ISSN 0071-1136 Series E-ISSN 2197-5655
issn_series 0071-1136
copyrightSpringer Nature Singapore Pte Ltd. 2019
The information of publication is updating

書目名稱Mordell–Weil Lattices影響因子(影響力)




書目名稱Mordell–Weil Lattices影響因子(影響力)學(xué)科排名




書目名稱Mordell–Weil Lattices網(wǎng)絡(luò)公開度




書目名稱Mordell–Weil Lattices網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Mordell–Weil Lattices被引頻次




書目名稱Mordell–Weil Lattices被引頻次學(xué)科排名




書目名稱Mordell–Weil Lattices年度引用




書目名稱Mordell–Weil Lattices年度引用學(xué)科排名




書目名稱Mordell–Weil Lattices讀者反饋




書目名稱Mordell–Weil Lattices讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:52:44 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:27:59 | 只看該作者
地板
發(fā)表于 2025-3-22 07:25:37 | 只看該作者
5#
發(fā)表于 2025-3-22 11:24:48 | 只看該作者
Matthias Schütt,Tetsuji ShiodaIs the first comprehensive introduction of Mordell–Weil lattices that does not assume extensive prerequisites.Shows that the theory of Mordell–Weil lattices itself is very powerful yet relatively easy
6#
發(fā)表于 2025-3-22 16:30:06 | 只看該作者
Book 2019ce..Two chapters deal withelliptic K3 surfaces, a pulsating area of recent research activity which highlights many central properties of Mordell–Weil lattices. Finally, the book turns to the rank problem—one of the key motivations for the introduction of Mordell–Weil lattices. The authors present th
7#
發(fā)表于 2025-3-22 19:10:00 | 只看該作者
8#
發(fā)表于 2025-3-22 21:50:26 | 只看該作者
9#
發(fā)表于 2025-3-23 04:26:01 | 只看該作者
Book 2019y, which offers many fruitful connections to other areas of mathematics..The book presents all the ingredients entering into the theory of Mordell–Weil lattices in detail, notably, relevant portions of lattice theory, elliptic curves, and algebraic surfaces. After defining Mordell–Weil lattices, the
10#
發(fā)表于 2025-3-23 07:17:07 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 15:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
垫江县| 西峡县| 石门县| 长葛市| 安平县| 阜阳市| 宜良县| 钟山县| 龙泉市| 西林县| 安丘市| 莲花县| 包头市| 霸州市| 新竹县| 台南市| 策勒县| 聂拉木县| 重庆市| 利川市| 阳新县| 兰州市| 东兴市| 滨海县| 沙湾县| 武汉市| 江口县| 葫芦岛市| 西乌珠穆沁旗| 博爱县| 榆中县| 马边| 星子县| 锡林浩特市| 怀来县| 阳江市| 天水市| 潢川县| 德昌县| 沽源县| 门头沟区|