找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Monte Carlo Methods in Bayesian Computation; Ming-Hui Chen,Qi-Man Shao,Joseph G. Ibrahim Book 2000 Springer Science+Business Media New Yor

[復制鏈接]
查看: 32580|回復: 35
樓主
發(fā)表于 2025-3-21 18:46:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Monte Carlo Methods in Bayesian Computation
編輯Ming-Hui Chen,Qi-Man Shao,Joseph G. Ibrahim
視頻videohttp://file.papertrans.cn/640/639102/639102.mp4
概述Includes supplementary material:
叢書名稱Springer Series in Statistics
圖書封面Titlebook: Monte Carlo Methods in Bayesian Computation;  Ming-Hui Chen,Qi-Man Shao,Joseph G. Ibrahim Book 2000 Springer Science+Business Media New Yor
描述Sampling from the posterior distribution and computing posterior quanti- ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput- ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv- ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste- rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in- volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac- tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent
出版日期Book 2000
關鍵詞Bayesian Computation; Estimator; Likelihood; Logistic Regression; Markov Chain; Monte Carlo Methods; Time
版次1
doihttps://doi.org/10.1007/978-1-4612-1276-8
isbn_softcover978-1-4612-7074-4
isbn_ebook978-1-4612-1276-8Series ISSN 0172-7397 Series E-ISSN 2197-568X
issn_series 0172-7397
copyrightSpringer Science+Business Media New York 2000
The information of publication is updating

書目名稱Monte Carlo Methods in Bayesian Computation影響因子(影響力)




書目名稱Monte Carlo Methods in Bayesian Computation影響因子(影響力)學科排名




書目名稱Monte Carlo Methods in Bayesian Computation網(wǎng)絡公開度




書目名稱Monte Carlo Methods in Bayesian Computation網(wǎng)絡公開度學科排名




書目名稱Monte Carlo Methods in Bayesian Computation被引頻次




書目名稱Monte Carlo Methods in Bayesian Computation被引頻次學科排名




書目名稱Monte Carlo Methods in Bayesian Computation年度引用




書目名稱Monte Carlo Methods in Bayesian Computation年度引用學科排名




書目名稱Monte Carlo Methods in Bayesian Computation讀者反饋




書目名稱Monte Carlo Methods in Bayesian Computation讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:43:39 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:40:01 | 只看該作者
Ming-Hui Chen,Qi-Man Shao,Joseph G. IbrahimIncludes supplementary material:
地板
發(fā)表于 2025-3-22 06:09:47 | 只看該作者
5#
發(fā)表于 2025-3-22 08:54:46 | 只看該作者
6#
發(fā)表于 2025-3-22 15:11:57 | 只看該作者
978-1-4612-7074-4Springer Science+Business Media New York 2000
7#
發(fā)表于 2025-3-22 17:37:35 | 只看該作者
8#
發(fā)表于 2025-3-22 22:18:44 | 只看該作者
9#
發(fā)表于 2025-3-23 02:25:49 | 只看該作者
0172-7397 n Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput- ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques
10#
發(fā)表于 2025-3-23 07:01:22 | 只看該作者
Zusammenfassungschiedlich ausgestaltet. Unterschiede konnten sowohl bei den gesetzlichen Zwangsvorsorgema?nahmen als auch bei betrieblichen Vorsorgema?nahmen festgestellt werden. Einzig die private Altersvorsorge scheint bei allen betrachteten Typen von Erwerbst?tigen gleich ausgestaltet.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 15:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
洱源县| 营山县| 左云县| 明水县| 湘西| 霍山县| 盘山县| 泽普县| 皮山县| 通道| 兴和县| 临高县| 云南省| 渝北区| 固安县| 囊谦县| 穆棱市| 屏山县| 萝北县| 无棣县| 新竹市| 嘉善县| 昌邑市| 金川县| 尉犁县| 昌黎县| 宝应县| 灌南县| 土默特左旗| 辽阳县| 聊城市| 正宁县| 襄汾县| 姜堰市| 时尚| 无极县| 高碑店市| 绍兴县| 乡宁县| 松桃| 阳泉市|