找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Modern Methodology and Applications in Spatial-Temporal Modeling; Gareth William Peters,Tomoko Matsui Book 2015 The Author(s) 2015 Audio a

[復(fù)制鏈接]
查看: 34849|回復(fù): 35
樓主
發(fā)表于 2025-3-21 20:04:13 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Modern Methodology and Applications in Spatial-Temporal Modeling
編輯Gareth William Peters,Tomoko Matsui
視頻videohttp://file.papertrans.cn/638/637253/637253.mp4
概述Covers specialized topics in spatial-temporal modeling provided by world experts for an introduction to key components.Discusses a rigorous probabilistic and statistical framework for a range of conte
叢書名稱SpringerBriefs in Statistics
圖書封面Titlebook: Modern Methodology and Applications in Spatial-Temporal Modeling;  Gareth William Peters,Tomoko Matsui Book 2015 The Author(s) 2015 Audio a
描述?This book provides a modern introductory tutorial on specialized methodological and applied aspects of spatial and temporal modeling. The areas covered involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter deals with non-parametric Bayesian inference via a recently developed framework known as kernel mean embedding which has had a significant influence in machine learning disciplines. The second chapter takes up non-parametric statistical methods for spatial field reconstruction and exceedance probability estimation based on Gaussian process-based models in the context of wireless sensor network data. The third chapter presents signal-processing methods applied to acoustic mood analysis based on music signal analysis. The fourth chapter covers models that are applicable to time series modeling in the domain of speech and language processing. This includes aspects of factor analysis, independent component analysis in an unsupervised learning setting. The chapter moves on to include more advanced topics on generalized latent variable topic models based on hierarchical Dirichlet pr
出版日期Book 2015
關(guān)鍵詞Audio and Music Signal Processing; Gaussian Processes; Kernel Methods; Non-Parametric Bayesian Inferenc
版次1
doihttps://doi.org/10.1007/978-4-431-55339-7
isbn_softcover978-4-431-55338-0
isbn_ebook978-4-431-55339-7Series ISSN 2191-544X Series E-ISSN 2191-5458
issn_series 2191-544X
copyrightThe Author(s) 2015
The information of publication is updating

書目名稱Modern Methodology and Applications in Spatial-Temporal Modeling影響因子(影響力)




書目名稱Modern Methodology and Applications in Spatial-Temporal Modeling影響因子(影響力)學(xué)科排名




書目名稱Modern Methodology and Applications in Spatial-Temporal Modeling網(wǎng)絡(luò)公開度




書目名稱Modern Methodology and Applications in Spatial-Temporal Modeling網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Modern Methodology and Applications in Spatial-Temporal Modeling被引頻次




書目名稱Modern Methodology and Applications in Spatial-Temporal Modeling被引頻次學(xué)科排名




書目名稱Modern Methodology and Applications in Spatial-Temporal Modeling年度引用




書目名稱Modern Methodology and Applications in Spatial-Temporal Modeling年度引用學(xué)科排名




書目名稱Modern Methodology and Applications in Spatial-Temporal Modeling讀者反饋




書目名稱Modern Methodology and Applications in Spatial-Temporal Modeling讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:30:23 | 只看該作者
SpringerBriefs in Statisticshttp://image.papertrans.cn/m/image/637253.jpg
板凳
發(fā)表于 2025-3-22 01:57:45 | 只看該作者
https://doi.org/10.1007/978-4-431-55339-7Audio and Music Signal Processing; Gaussian Processes; Kernel Methods; Non-Parametric Bayesian Inferenc
地板
發(fā)表于 2025-3-22 05:15:17 | 只看該作者
5#
發(fā)表于 2025-3-22 12:39:56 | 只看該作者
6#
發(fā)表于 2025-3-22 15:10:04 | 只看該作者
7#
發(fā)表于 2025-3-22 17:41:38 | 只看該作者
8#
發(fā)表于 2025-3-23 00:30:30 | 只看該作者
9#
發(fā)表于 2025-3-23 04:42:39 | 只看該作者
Book 2015ed involve a range of topics which reflect the diversity of this domain of research across a number of quantitative disciplines. For instance, the first chapter deals with non-parametric Bayesian inference via a recently developed framework known as kernel mean embedding which has had a significant
10#
發(fā)表于 2025-3-23 08:08:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 02:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赣州市| 西乌珠穆沁旗| 重庆市| 隆德县| 朝阳市| 丰县| 景东| 巴南区| 瓦房店市| 安图县| 大埔县| 江北区| 辽阳县| 威远县| 锡林浩特市| 时尚| 内江市| 莒南县| 余姚市| 惠水县| 许昌市| 开封县| 综艺| 垦利县| 江川县| 南通市| 麻城市| 吴堡县| 蛟河市| 邢台县| 沭阳县| 马尔康县| 文昌市| 永宁县| 徐汇区| 乐业县| 新沂市| 雷州市| 阿克苏市| 常德市| 大冶市|