找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Modern Deep Learning for Tabular Data; Novel Approaches to Andre Ye,Zian Wang Book 2023 Andre Ye and Zian Wang 2023 Deep Learning.Tabular

[復(fù)制鏈接]
查看: 16421|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:53:29 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Modern Deep Learning for Tabular Data
副標(biāo)題Novel Approaches to
編輯Andre Ye,Zian Wang
視頻videohttp://file.papertrans.cn/638/637082/637082.mp4
概述Explains deep learning applications to tabular data, documenting novel methods and techniques.Exposes and synthesizes lesser-known deep learning tools and techniques backed by recent research.Apply co
圖書封面Titlebook: Modern Deep Learning for Tabular Data; Novel Approaches to  Andre Ye,Zian Wang Book 2023 Andre Ye and Zian Wang 2023 Deep Learning.Tabular
描述.Deep learning is one of the most powerful tools in the modern artificial intelligence landscape. While having been predominantly applied to highly specialized image, text, and signal datasets, this book synthesizes and presents novel deep learning approaches to a seemingly unlikely domain – tabular data. Whether for finance, business, security, medicine, or countless other domain, deep learning can help mine and model complex patterns in tabular data – an incredibly ubiquitous form of structured data...Part I of the book offers a rigorous overview of machine learning principles, algorithms, and implementation skills relevant to holistically modeling and manipulating tabular data. Part II studies five dominant deep learning model designs – Artificial Neural Networks, Convolutional Neural Networks, Recurrent Neural Networks, Attention and Transformers, and Tree-Rooted Networks – through both their ‘default’ usage and their application to tabular data. Part III compounds the power of the previously covered methods by surveying strategies and techniques to supercharge deep learning systems: autoencoders, deep data generation, meta-optimization, multi-model arrangement, and neural netw
出版日期Book 2023
關(guān)鍵詞Deep Learning; Tabular Data; Machine Learning; Neural Network; Recurrent Neural Networks; Convolutional N
版次1
doihttps://doi.org/10.1007/978-1-4842-8692-0
isbn_softcover978-1-4842-8691-3
isbn_ebook978-1-4842-8692-0
copyrightAndre Ye and Zian Wang 2023
The information of publication is updating

書目名稱Modern Deep Learning for Tabular Data影響因子(影響力)




書目名稱Modern Deep Learning for Tabular Data影響因子(影響力)學(xué)科排名




書目名稱Modern Deep Learning for Tabular Data網(wǎng)絡(luò)公開度




書目名稱Modern Deep Learning for Tabular Data網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Modern Deep Learning for Tabular Data被引頻次




書目名稱Modern Deep Learning for Tabular Data被引頻次學(xué)科排名




書目名稱Modern Deep Learning for Tabular Data年度引用




書目名稱Modern Deep Learning for Tabular Data年度引用學(xué)科排名




書目名稱Modern Deep Learning for Tabular Data讀者反饋




書目名稱Modern Deep Learning for Tabular Data讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:40:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:57:56 | 只看該作者
地板
發(fā)表于 2025-3-22 05:04:44 | 只看該作者
http://image.papertrans.cn/m/image/637082.jpg
5#
發(fā)表于 2025-3-22 12:20:30 | 只看該作者
6#
發(fā)表于 2025-3-22 15:10:16 | 只看該作者
7#
發(fā)表于 2025-3-22 20:12:02 | 只看該作者
wer of the previously covered methods by surveying strategies and techniques to supercharge deep learning systems: autoencoders, deep data generation, meta-optimization, multi-model arrangement, and neural netw978-1-4842-8691-3978-1-4842-8692-0
8#
發(fā)表于 2025-3-22 21:48:13 | 只看該作者
9#
發(fā)表于 2025-3-23 03:36:22 | 只看該作者
Passive Filters,gher-order Butterworth, Chebyshev and Elliptic low-pass filters are handled using published design tables then high-pass and band-pass filters are derived by transformation, and the chapter?concludes with all-pass filters.
10#
發(fā)表于 2025-3-23 08:50:52 | 只看該作者
,Tr?gheit und Energie,atz von der Erhaltung der Energie. Schlie?lich verschmelzen für moderne, relativistische Betrachtung auch noch Impuls- und Energiesatz zu einer Einheit. Diese Verschmelzungen bilden das Thema der folgenden Ausführungen.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌拉特前旗| 利川市| 黑龙江省| 石门县| 当阳市| 桃园县| 广西| 田东县| 商河县| 隆化县| 甘南县| 简阳市| 海兴县| 富顺县| 远安县| 千阳县| 贺兰县| 新泰市| 吐鲁番市| 石楼县| 漠河县| 桑日县| 萨嘎县| 常德市| 赣榆县| 宁蒗| 衢州市| 无极县| 永康市| 万全县| 阿坝县| 临清市| 霍山县| 满城县| 沙坪坝区| 阳江市| 壶关县| 樟树市| 旬邑县| 陕西省| 塘沽区|