找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Modern Algorithms of Cluster Analysis; Slawomir‘Wierzchoń,Mieczyslaw K?opotek Book 2018 Springer International Publishing AG 2018 Cluster

[復(fù)制鏈接]
查看: 53783|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:37:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Modern Algorithms of Cluster Analysis
編輯Slawomir‘Wierzchoń,Mieczyslaw K?opotek
視頻videohttp://file.papertrans.cn/637/636903/636903.mp4
概述Provides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, and cluster analysis.Presents a number of approaches to handling a large number of objects
叢書(shū)名稱Studies in Big Data
圖書(shū)封面Titlebook: Modern Algorithms of Cluster Analysis;  Slawomir‘Wierzchoń,Mieczyslaw K?opotek Book 2018 Springer International Publishing AG 2018 Cluster
描述.This book provides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, cluster analysis etc..?.The book explains feature-based, graph-based and spectral clustering methods and discusses their formal similarities and differences. Understanding the related formal concepts is particularly vital in the epoch of Big Data; due to the volume and characteristics of the data, it is no longer feasible to predominantly rely on merely viewing the data when facing a clustering problem..?.Usually clustering involves choosing similar objects and grouping them together. To facilitate the choice of similarity measures for complex and big data, various measures of object similarity, based on quantitative (like numerical measurement results) and qualitative features (like text), as well as combinations of the two, are described, as well as graph-based similarity measures for (hyper) linked objects and measures for multilayered graphs. Numerous variants demonstrating how such similarity measures can be exploited when defining clustering cost functions are also presented..?.In addition, the book provides an overview of approaches to handling large collec
出版日期Book 2018
關(guān)鍵詞Cluster Analysis; Big Data; Data Sets; Spectral Clustering; Combinatorial Cluster Analysis
版次1
doihttps://doi.org/10.1007/978-3-319-69308-8
isbn_softcover978-3-319-88752-4
isbn_ebook978-3-319-69308-8Series ISSN 2197-6503 Series E-ISSN 2197-6511
issn_series 2197-6503
copyrightSpringer International Publishing AG 2018
The information of publication is updating

書(shū)目名稱Modern Algorithms of Cluster Analysis影響因子(影響力)




書(shū)目名稱Modern Algorithms of Cluster Analysis影響因子(影響力)學(xué)科排名




書(shū)目名稱Modern Algorithms of Cluster Analysis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Modern Algorithms of Cluster Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Modern Algorithms of Cluster Analysis被引頻次




書(shū)目名稱Modern Algorithms of Cluster Analysis被引頻次學(xué)科排名




書(shū)目名稱Modern Algorithms of Cluster Analysis年度引用




書(shū)目名稱Modern Algorithms of Cluster Analysis年度引用學(xué)科排名




書(shū)目名稱Modern Algorithms of Cluster Analysis讀者反饋




書(shū)目名稱Modern Algorithms of Cluster Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:13:56 | 只看該作者
Book 2018ok explains feature-based, graph-based and spectral clustering methods and discusses their formal similarities and differences. Understanding the related formal concepts is particularly vital in the epoch of Big Data; due to the volume and characteristics of the data, it is no longer feasible to pre
板凳
發(fā)表于 2025-3-22 00:47:32 | 只看該作者
地板
發(fā)表于 2025-3-22 05:15:46 | 只看該作者
5#
發(fā)表于 2025-3-22 09:12:45 | 只看該作者
978-3-319-88752-4Springer International Publishing AG 2018
6#
發(fā)表于 2025-3-22 13:33:59 | 只看該作者
Modern Algorithms of Cluster Analysis978-3-319-69308-8Series ISSN 2197-6503 Series E-ISSN 2197-6511
7#
發(fā)表于 2025-3-22 20:03:29 | 只看該作者
Studies in Big Datahttp://image.papertrans.cn/m/image/636903.jpg
8#
發(fā)表于 2025-3-23 00:10:16 | 只看該作者
9#
發(fā)表于 2025-3-23 04:09:04 | 只看該作者
Slawomir‘Wierzchoń,Mieczyslaw K?opotekProvides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, and cluster analysis.Presents a number of approaches to handling a large number of objects
10#
發(fā)表于 2025-3-23 05:58:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 02:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普兰店市| 新兴县| 荥经县| 洛浦县| 荣昌县| 广汉市| 荆门市| 廉江市| 凌海市| 泸定县| 嘉峪关市| 阜新| 罗城| 温泉县| 金平| 观塘区| 曲麻莱县| 桂平市| 新沂市| 汾西县| 迭部县| 广昌县| 临泽县| 临汾市| 昆山市| 天峨县| 遵化市| 肥乡县| 芒康县| 巨野县| 安远县| 保康县| 清河县| 大连市| 宜良县| 麻城市| 四平市| 酒泉市| 卢氏县| 宁阳县| 饶阳县|