找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Microlocal Methods in Mathematical Physics and Global Analysis; Daniel Grieser,Stefan Teufel,Andras Vasy Conference proceedings 2013 Sprin

[復(fù)制鏈接]
樓主: 和尚吃肉片
41#
發(fā)表于 2025-3-28 15:17:52 | 只看該作者
42#
發(fā)表于 2025-3-28 21:19:07 | 只看該作者
43#
發(fā)表于 2025-3-29 01:35:16 | 只看該作者
2297-0215 ical Physics and Global Analysis‘, which was held at the University of Tübingen? from the?14th to the 18th of June 2011, are collected.? ?978-3-0348-0465-3978-3-0348-0466-0Series ISSN 2297-0215 Series E-ISSN 2297-024X
44#
發(fā)表于 2025-3-29 06:27:47 | 只看該作者
45#
發(fā)表于 2025-3-29 07:41:28 | 只看該作者
46#
發(fā)表于 2025-3-29 12:04:34 | 只看該作者
47#
發(fā)表于 2025-3-29 18:34:53 | 只看該作者
The Adiabatic Limit of the Laplacian on Thin Fibre Bundles impose Dirichlet conditions. In particular this allows us to understand, in a general setting, results obtained in the context of quantum waveguides (see the review [2]), in which case the bundle is usually a solid cylinder or a square.
48#
發(fā)表于 2025-3-29 20:54:46 | 只看該作者
49#
發(fā)表于 2025-3-30 02:51:52 | 只看該作者
Spectral Geometry for the Riemann Moduli Spaceproblems in the setting of spaces with structured singularities has become a real focus in geometric analysis and partial differential equations. Unlike for the many traditional problems concerning spaces and equations with overall low regularity, the focus here is on spaces which are mostly smooth,
50#
發(fā)表于 2025-3-30 04:57:47 | 只看該作者
Invariant Integral Operators on the Oshima Compactification of a Riemannian Symmetric Space: Kernel mal compact subgroup. Consider further the Oshima compactification . of. [8], which is a simply connected, closed, real-analytic manifold carrying an analytic .-action. The orbital decomposition of . is of normal crossing type, and the open orbits are isomorphic to .∕., the number of them being equa
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜宾市| 乐都县| 铜陵市| 阿克陶县| 长垣县| 八宿县| 宜宾市| 宜阳县| 东海县| 克什克腾旗| 额敏县| 大埔区| 安岳县| 雅安市| 会同县| 全椒县| 张北县| 民丰县| 修文县| 饶河县| 临夏县| 化州市| 桦南县| 新晃| 长泰县| 峨眉山市| 郎溪县| 五原县| 普兰店市| 松江区| 英超| 扶绥县| 板桥市| 页游| 岳阳县| 永顺县| 南安市| 瑞昌市| 涿州市| 关岭| 汶川县|