找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Microlocal Methods in Mathematical Physics and Global Analysis; Daniel Grieser,Stefan Teufel,Andras Vasy Conference proceedings 2013 Sprin

[復(fù)制鏈接]
樓主: 和尚吃肉片
11#
發(fā)表于 2025-3-23 09:42:25 | 只看該作者
12#
發(fā)表于 2025-3-23 15:24:26 | 只看該作者
13#
發(fā)表于 2025-3-23 20:52:16 | 只看該作者
14#
發(fā)表于 2025-3-23 23:16:51 | 只看該作者
Local Smoothing with a Prescribed Loss for the Schr?dinger EquationIn ., the Schr?dinger propagator at time . is unitary on .. spaces. However, solutions to the linear Schr?dinger equation on . are smoother . in time, and . in space:
15#
發(fā)表于 2025-3-24 02:50:35 | 只看該作者
Propagation Through Trapped Sets and Semiclassical Resolvent EstimatesLet .,..We are interested in semiclassical resolvent estimates of the form. for . > 0,. with.,. > 1 ∕ 2. We ask: how is the function .(.) for which (1) holds affected by the relationship between the support of . and the trapped set at energy ., defined by .Here .and ..
16#
發(fā)表于 2025-3-24 07:54:35 | 只看該作者
A Nonlinear Adiabatic Theorem for Coherent StatesWe present a result obtained in collaboration with Rémi Carles on the propagation of coherent states for a 1-d cubic nonlinear Schr?dinger equation in a semi-classical regime (.):
17#
發(fā)表于 2025-3-24 12:37:39 | 只看該作者
The Effective Hamiltonian in Curved Quantum Waveguides and When It Does Not WorkWe are concerned with the singular operator limit for the Dirichlet Laplacian in a three-dimensional curved tube (cf. Fig. 1) when its cross-section shrinks to zero.
18#
發(fā)表于 2025-3-24 17:27:38 | 只看該作者
19#
發(fā)表于 2025-3-24 21:46:34 | 只看該作者
20#
發(fā)表于 2025-3-25 00:24:15 | 只看該作者
On the Closure of Elliptic Wedge OperatorsWe present a semi-Fredholm theorem for the minimal extension of an elliptic differential operator on a manifold with wedge singularities and give, under suitable assumptions, a full asymptotic expansion of the trace of the resolvent.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 21:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
梨树县| 邵武市| 茶陵县| 法库县| 奉化市| 合山市| 杭州市| 抚松县| 华亭县| 惠东县| 平谷区| 来凤县| 朝阳区| 松溪县| 肇庆市| 育儿| 和林格尔县| 汝城县| 五台县| 宜都市| 女性| 富川| 南京市| 博白县| 吴旗县| 钟祥市| 莱芜市| 虞城县| 阿拉尔市| 桐庐县| 五寨县| 南宫市| 龙江县| 嘉祥县| 正安县| 庆城县| 沅江市| 思南县| 淅川县| 周至县| 南部县|