找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Metrical Theory of Continued Fractions; Marius Iosifescu,Cor Kraaikamp Book 2002 Springer Science+Business Media B.V. 2002 Ergodic theory.

[復(fù)制鏈接]
樓主: Jaundice
11#
發(fā)表于 2025-3-23 11:20:22 | 只看該作者
Mathematics and Its Applicationshttp://image.papertrans.cn/m/image/632474.jpg
12#
發(fā)表于 2025-3-23 17:39:56 | 只看該作者
978-90-481-6130-0Springer Science+Business Media B.V. 2002
13#
發(fā)表于 2025-3-23 20:52:20 | 只看該作者
14#
發(fā)表于 2025-3-24 01:16:15 | 只看該作者
15#
發(fā)表于 2025-3-24 02:43:37 | 只看該作者
Basic properties of the continued fraction expansion,In this chapter the (regular) continued fraction expansion is introduced and notation fixed. Some basic properties to be used in subsequent chapters are also derived.
16#
發(fā)表于 2025-3-24 10:12:48 | 只看該作者
17#
發(fā)表于 2025-3-24 14:33:09 | 只看該作者
18#
發(fā)表于 2025-3-24 15:15:50 | 只看該作者
Book 2002) = integer part of 1/w, w E 0, are called the (regular continued fraction) digits of w. Writing . for arbitrary indeterminates Xi, 1 :::; i :::; n, we have w = lim [al(w),··· , an(w)], w E 0, n--->oo thus explaining the name of T. The above equation will be also written as w = lim [al(w), a2(w),···
19#
發(fā)表于 2025-3-24 20:43:57 | 只看該作者
where al(w) = integer part of 1/w, w E 0, are called the (regular continued fraction) digits of w. Writing . for arbitrary indeterminates Xi, 1 :::; i :::; n, we have w = lim [al(w),··· , an(w)], w E 0, n--->oo thus explaining the name of T. The above equation will be also written as w = lim [al(w), a2(w),···978-90-481-6130-0978-94-015-9940-5
20#
發(fā)表于 2025-3-25 00:22:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 03:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宿州市| 南和县| 江孜县| 墨竹工卡县| 怀远县| 翁牛特旗| 准格尔旗| 南皮县| 凤凰县| 廊坊市| 绥阳县| 常宁市| 杭锦后旗| 西盟| 巍山| 涟水县| 博客| 湄潭县| 界首市| 丹凤县| 南召县| 建瓯市| 阜城县| 凤冈县| 东光县| 万源市| 绥化市| 边坝县| 老河口市| 临武县| 永康市| 日土县| 和龙市| 和政县| 普陀区| 望奎县| 景德镇市| 德格县| 罗甸县| 徐汇区| 勃利县|