找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Methods of Small Parameter in Mathematical Biology; Jacek Banasiak,Miros?aw Lachowicz Book 2014 Springer International Publishing Switzerl

[復(fù)制鏈接]
查看: 10882|回復(fù): 45
樓主
發(fā)表于 2025-3-21 16:13:10 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Methods of Small Parameter in Mathematical Biology
編輯Jacek Banasiak,Miros?aw Lachowicz
視頻videohttp://file.papertrans.cn/633/632421/632421.mp4
概述Unified approach to singular perturbed problems.Applications and examples to mathematical biology.Chapters are arranged according to the mathematical complexity.Includes supplementary material:
叢書名稱Modeling and Simulation in Science, Engineering and Technology
圖書封面Titlebook: Methods of Small Parameter in Mathematical Biology;  Jacek Banasiak,Miros?aw Lachowicz Book 2014 Springer International Publishing Switzerl
描述This monograph presents new tools for modeling multiscale biological processes. Natural processes are usually driven by mechanisms widely differing from each other in the time or space scale at which they operate and thus should be described by appropriate multiscale models. However, looking at all such scales simultaneously is often infeasible, costly, and provides information that is redundant for a particular application. Hence, there has been a growing interest in providing a more focused description of multiscale processes by aggregating variables in a way that is relevant to the purpose at hand and preserves the salient features of the dynamics. Many ad hoc methods have been devised, and the aim of this book is to present a systematic way of deriving the so-called limit equations for such aggregated variables and ensuring that the coefficients of these equations encapsulate the relevant information from the discarded levels of description. Since any approximation is only valid if an estimate of the incurred error is available, the tools the authors?describe allow for proving that the solutions to the original multiscale family of equations converge to the solution of the limi
出版日期Book 2014
關(guān)鍵詞Singularly perturbed problems; Tikhonov theorem; asymptotic analysis; multiscale descriptions; populatio
版次1
doihttps://doi.org/10.1007/978-3-319-05140-6
isbn_softcover978-3-319-38183-1
isbn_ebook978-3-319-05140-6Series ISSN 2164-3679 Series E-ISSN 2164-3725
issn_series 2164-3679
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

書目名稱Methods of Small Parameter in Mathematical Biology影響因子(影響力)




書目名稱Methods of Small Parameter in Mathematical Biology影響因子(影響力)學科排名




書目名稱Methods of Small Parameter in Mathematical Biology網(wǎng)絡(luò)公開度




書目名稱Methods of Small Parameter in Mathematical Biology網(wǎng)絡(luò)公開度學科排名




書目名稱Methods of Small Parameter in Mathematical Biology被引頻次




書目名稱Methods of Small Parameter in Mathematical Biology被引頻次學科排名




書目名稱Methods of Small Parameter in Mathematical Biology年度引用




書目名稱Methods of Small Parameter in Mathematical Biology年度引用學科排名




書目名稱Methods of Small Parameter in Mathematical Biology讀者反饋




書目名稱Methods of Small Parameter in Mathematical Biology讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:27:13 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:45:39 | 只看該作者
地板
發(fā)表于 2025-3-22 07:02:07 | 只看該作者
5#
發(fā)表于 2025-3-22 11:49:45 | 只看該作者
6#
發(fā)表于 2025-3-22 13:17:38 | 只看該作者
7#
發(fā)表于 2025-3-22 20:52:05 | 只看該作者
From Microscopic to Macroscopic Descriptions,ales, from the micro- to the macro-scale. It begins with the microscopic, the so-called individually based, models in which each individual in the population (agent) is characterized by certain properties. The models at this level are represented by (large) systems of linear integro-differential equ
8#
發(fā)表于 2025-3-22 22:46:05 | 只看該作者
9#
發(fā)表于 2025-3-23 04:36:25 | 只看該作者
10#
發(fā)表于 2025-3-23 05:53:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 00:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
深水埗区| 邹城市| 宜兴市| 郯城县| 全椒县| 乌兰察布市| 余庆县| 高邑县| 北安市| 河东区| 平凉市| 通江县| 巩义市| 石嘴山市| 新邵县| 舟山市| 民权县| 石狮市| 博客| 邵阳县| 龙里县| 鄂托克前旗| 盐城市| 正蓝旗| 西乡县| 长垣县| 三江| 博罗县| 大埔区| 黔西| 华安县| 富民县| 临汾市| 怀集县| 洛阳市| 东乡县| 呼图壁县| 盐边县| 库尔勒市| 辽宁省| 盈江县|