找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Metamathematics of Fuzzy Logic; Petr Hájek Book 1998 Springer Science+Business Media Dordrecht 1998 addition.logic.mathematical logic.pred

[復(fù)制鏈接]
樓主: 分類
21#
發(fā)表于 2025-3-25 04:20:38 | 只看該作者
22#
發(fā)表于 2025-3-25 09:44:42 | 只看該作者
23#
發(fā)表于 2025-3-25 14:21:32 | 只看該作者
Miscellanea,ther directions are possible.) In Section 1 we present a rather strong fuzzy logic, based on the work of Takeuti and Titani, and containing ?ukasiewicz, G?del and product predicate logics ??, G?, Π? as its sublogics. We show completeness with respect to a non-finitary notion of provability. In Secti
24#
發(fā)表于 2025-3-25 18:08:49 | 只看該作者
Historical Remarks,overed everything; I apologize for all omissions. On the other hand, an attempt to collect all publications concerning fuzzy logic (in both broad and narrow senses) would lead to a special publication; note that e.g. the book of Klir and Yuan [115] contains 1731 references! We thus only select refer
25#
發(fā)表于 2025-3-25 20:30:00 | 只看該作者
1572-6126 Some important systems of real-valued propositional and predicate calculus are defined and investigated. The aim is to show that fuzzy logic as a logic of imprecise (vague) propositions does have well-developed formal foundations and that most things usually named `fuzzy inference‘ can be naturally
26#
發(fā)表于 2025-3-26 03:59:09 | 只看該作者
Book 1998tant systems of real-valued propositional and predicate calculus are defined and investigated. The aim is to show that fuzzy logic as a logic of imprecise (vague) propositions does have well-developed formal foundations and that most things usually named `fuzzy inference‘ can be naturally understood
27#
發(fā)表于 2025-3-26 05:21:55 | 只看該作者
28#
發(fā)表于 2025-3-26 11:38:07 | 只看該作者
29#
發(fā)表于 2025-3-26 13:33:09 | 只看該作者
30#
發(fā)表于 2025-3-26 20:33:13 | 只看該作者
Historical Remarks,narrow senses) would lead to a special publication; note that e.g. the book of Klir and Yuan [115] contains 1731 references! We thus only select references that are relevant to fuzzy logic in the narrow sense.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 06:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
承德市| 洞口县| 苍溪县| 宁乡县| 英超| 安陆市| 淮滨县| 股票| 东阿县| 合阳县| 高安市| 巴青县| 宿迁市| 许昌市| 宜州市| 宽城| 泌阳县| 常宁市| 章丘市| 洛南县| 印江| 曲阳县| 海城市| 本溪市| 扶余县| 长汀县| 德清县| 清流县| 靖安县| 台安县| 喀什市| 温泉县| 鲁甸县| 剑川县| 蒙山县| 巴南区| 临江市| 孙吴县| 乌拉特后旗| 万山特区| 海丰县|