找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mengentheoretische Topologie; Boto Querenburg,G. Bengel,H. Zieschang Textbook 19731st edition Springer-Verlag Berlin Heidelberg 1973 Topol

[復(fù)制鏈接]
查看: 39479|回復(fù): 57
樓主
發(fā)表于 2025-3-21 17:19:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Mengentheoretische Topologie
編輯Boto Querenburg,G. Bengel,H. Zieschang
視頻videohttp://file.papertrans.cn/631/630597/630597.mp4
叢書(shū)名稱Hochschultext
圖書(shū)封面Titlebook: Mengentheoretische Topologie;  Boto Querenburg,G. Bengel,H. Zieschang Textbook 19731st edition Springer-Verlag Berlin Heidelberg 1973 Topol
出版日期Textbook 19731st edition
關(guān)鍵詞Topologie; mengentheoretische Topologie
版次1
doihttps://doi.org/10.1007/978-3-642-96167-0
isbn_ebook978-3-642-96167-0
copyrightSpringer-Verlag Berlin Heidelberg 1973
The information of publication is updating

書(shū)目名稱Mengentheoretische Topologie影響因子(影響力)




書(shū)目名稱Mengentheoretische Topologie影響因子(影響力)學(xué)科排名




書(shū)目名稱Mengentheoretische Topologie網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Mengentheoretische Topologie網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Mengentheoretische Topologie被引頻次




書(shū)目名稱Mengentheoretische Topologie被引頻次學(xué)科排名




書(shū)目名稱Mengentheoretische Topologie年度引用




書(shū)目名稱Mengentheoretische Topologie年度引用學(xué)科排名




書(shū)目名稱Mengentheoretische Topologie讀者反饋




書(shū)目名稱Mengentheoretische Topologie讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:59:43 | 只看該作者
Overview: 978-3-642-96167-0
板凳
發(fā)表于 2025-3-22 01:04:20 | 只看該作者
地板
發(fā)表于 2025-3-22 06:53:15 | 只看該作者
5#
發(fā)表于 2025-3-22 10:36:57 | 只看該作者
Bezeichnungen und mengentheoretische Grundlagen,Ist a Element einer Menge A, dann schreiben wir a ε A, ist das nicht der Fall, so schreiben wir a ? A. Ist A eine Menge und E eine Eigenschaft, dann bedeutet E(a), da? auf a ε A die Eigenschaft E zutrifft. Die Menge der Elemente a von A, für die E(a) zutrifft, wird mit {a ε A| E(a)} bezeichnet.
6#
發(fā)表于 2025-3-22 16:47:58 | 只看該作者
7#
發(fā)表于 2025-3-22 20:39:00 | 只看該作者
,Topologische R?ume und stetige Abbildungen,Die im vorigen Kapitel behandelten Eigenschaften von offenen Mengen in metrischen R?umen werden zur Definition von Topologien auf einer Menge X verwandt. Mit Hilfe dieser Strukturen wird der Begriff der stetigen Abbildung von metrischen R?umen in metrische R?ume auf beliebige, mit einer Topologie versehene Mengen verallgemeinert.
8#
發(fā)表于 2025-3-22 21:42:40 | 只看該作者
,Erzeugung topologischer R?ume,In diesem Kapitel konstruieren wir auf Teilmengen, Summenmengen, Produkt- und Quotientenmengen Topologien, die jeweils durch eine “universelle” Eigenschaft gekennzeichnet sind (vgl. 3.4(b), 3.28, 3.13(b) und 3.22).
9#
發(fā)表于 2025-3-23 03:25:23 | 只看該作者
10#
發(fā)表于 2025-3-23 05:48:22 | 只看該作者
,Uniforme R?ume,In metrischen R?umen ist es m?glich, Umgebungen an verschiedenen Punkten miteinander zu vergleichen und den Begriff der gleichm??igen Stetigkeit einzuführen. Ein Nachteil ist, da? ein Produkt metrischer R?ume nur dann metrisierbar ist, wenn es abz?hlbar viele Faktoren besitzt.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涞源县| 霍山县| 睢宁县| 安阳市| 中西区| 白水县| 泰宁县| 抚顺县| 鲜城| 蕉岭县| 交城县| 东源县| 雅安市| 静乐县| 巴东县| 南皮县| 陇川县| 永春县| 遂溪县| 屏边| 潢川县| 清涧县| 枞阳县| 揭阳市| 兖州市| 曲松县| 手游| 婺源县| 资源县| 抚松县| 蓬莱市| 顺义区| 五大连池市| 墨脱县| 泽普县| 阿瓦提县| 阿荣旗| 锦州市| 浮山县| 海兴县| 龙山县|