找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Understanding and Analysis; 27th Annual Conferen Gordon Waiter,Tryphon Lambrou,Sharon Gordon Conference proceedings 2024 The

[復(fù)制鏈接]
樓主: 螺絲刀
11#
發(fā)表于 2025-3-23 11:12:48 | 只看該作者
12#
發(fā)表于 2025-3-23 14:41:55 | 只看該作者
A Deep Learning Based Approach to?Semantic Segmentation of?Lung Tumour Areas in?Gross Pathology Imags which produced a tumour pixel-wise accuracy of 69.7% (96.8% global accuracy) and tumour area IoU score of 0.616. This work on this novel application highlights the challenges with implementing a semantic segmentation model in this domain that have not been previously documented.
13#
發(fā)表于 2025-3-23 18:33:03 | 只看該作者
14#
發(fā)表于 2025-3-23 22:23:18 | 只看該作者
15#
發(fā)表于 2025-3-24 05:26:16 | 只看該作者
Efficient Semantic Segmentation of Nuclei in Histopathology Images Using Segformeris used as it combines the advantages of transformers and convolutional neural networks. To evaluate the performance of the models, dice evaluation metric is used. The proposed method achieved state-of-the-art results on the PanNuke dataset, with Segformer-b4 achieving a mean dice score of 0.845, an
16#
發(fā)表于 2025-3-24 08:27:50 | 只看該作者
Cross-Modality Deep Transfer Learning: Application to?Liver Segmentation in?CT and?MRIunt of training data, which is not available for MR. There are many CT datasets available compared to few MR datasets. The use of transfer learning can help to mitigate the problem of having a small amount of training data. We suggest training a U-Net deep learning model on the large publicly availa
17#
發(fā)表于 2025-3-24 12:37:08 | 只看該作者
18#
發(fā)表于 2025-3-24 17:25:00 | 只看該作者
19#
發(fā)表于 2025-3-24 19:02:25 | 只看該作者
: Cross-Domain Cell Detection in?Histopathology Images via?Contextual Regularizations a reconstruction task that involves masking the high-level semantic features either stochastically or adaptively. Then, a transformer-based reconstruction head is designed to recover the original features based on partial observations. Additionally, CR can be seamlessly integrated with various dee
20#
發(fā)表于 2025-3-25 00:26:50 | 只看該作者
A New Similarity Metric for?Deformable Registration of?MALDI–MS and?MRI Imageslarity metric for deformable registration, based on the update of distance transformation values. We show that our method limits the intensity distortions while providing precisely registered images, on both synthetic and mouse brain images.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 16:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀来县| 阜康市| 安新县| 洱源县| 会东县| 库伦旗| 吴川市| 汝南县| 锡林浩特市| 兴安盟| 兴安县| 巩留县| 新闻| 池州市| 木里| 鄂州市| 聊城市| 沁水县| 且末县| 高台县| 深水埗区| 湘阴县| 周口市| 峡江县| 宿松县| 富源县| 西安市| 荥经县| 深州市| 敦煌市| 长宁县| 连云港市| 崇义县| 通海县| 眉山市| 湄潭县| 新野县| 临桂县| 玉树县| 泗阳县| 宝丰县|