找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Medical Image Understanding and Analysis; 27th Annual Conferen Gordon Waiter,Tryphon Lambrou,Sharon Gordon Conference proceedings 2024 The

[復(fù)制鏈接]
樓主: 螺絲刀
11#
發(fā)表于 2025-3-23 11:12:48 | 只看該作者
12#
發(fā)表于 2025-3-23 14:41:55 | 只看該作者
A Deep Learning Based Approach to?Semantic Segmentation of?Lung Tumour Areas in?Gross Pathology Imags which produced a tumour pixel-wise accuracy of 69.7% (96.8% global accuracy) and tumour area IoU score of 0.616. This work on this novel application highlights the challenges with implementing a semantic segmentation model in this domain that have not been previously documented.
13#
發(fā)表于 2025-3-23 18:33:03 | 只看該作者
14#
發(fā)表于 2025-3-23 22:23:18 | 只看該作者
15#
發(fā)表于 2025-3-24 05:26:16 | 只看該作者
Efficient Semantic Segmentation of Nuclei in Histopathology Images Using Segformeris used as it combines the advantages of transformers and convolutional neural networks. To evaluate the performance of the models, dice evaluation metric is used. The proposed method achieved state-of-the-art results on the PanNuke dataset, with Segformer-b4 achieving a mean dice score of 0.845, an
16#
發(fā)表于 2025-3-24 08:27:50 | 只看該作者
Cross-Modality Deep Transfer Learning: Application to?Liver Segmentation in?CT and?MRIunt of training data, which is not available for MR. There are many CT datasets available compared to few MR datasets. The use of transfer learning can help to mitigate the problem of having a small amount of training data. We suggest training a U-Net deep learning model on the large publicly availa
17#
發(fā)表于 2025-3-24 12:37:08 | 只看該作者
18#
發(fā)表于 2025-3-24 17:25:00 | 只看該作者
19#
發(fā)表于 2025-3-24 19:02:25 | 只看該作者
: Cross-Domain Cell Detection in?Histopathology Images via?Contextual Regularizations a reconstruction task that involves masking the high-level semantic features either stochastically or adaptively. Then, a transformer-based reconstruction head is designed to recover the original features based on partial observations. Additionally, CR can be seamlessly integrated with various dee
20#
發(fā)表于 2025-3-25 00:26:50 | 只看該作者
A New Similarity Metric for?Deformable Registration of?MALDI–MS and?MRI Imageslarity metric for deformable registration, based on the update of distance transformation values. We show that our method limits the intensity distortions while providing precisely registered images, on both synthetic and mouse brain images.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 03:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉水县| 铜鼓县| 蒙城县| 都安| 罗江县| 东台市| 马边| 兴业县| 铜川市| 尼木县| 宜城市| 镇赉县| 化德县| 宣化县| 库尔勒市| 三台县| 佳木斯市| 南华县| 永安市| 谢通门县| 江陵县| 朔州市| 永新县| 双城市| 玉溪市| 靖宇县| 阿勒泰市| 江源县| 昆山市| 华亭县| 姜堰市| 黎川县| 乌鲁木齐县| 静宁县| 德令哈市| 九龙坡区| 永济市| 巨鹿县| 安丘市| 绥阳县| 贵港市|